GLOBAL OPTIMIZATION FOR REAL-TIME OPERATIONS OF AN INDUSTRIAL GAS NETWORK

Yash Puranik and Nick Sahinidis (CMU)
Tong Li, Ajit Gopalakrishnan and Brian Besancon (Air Liquide)

GAS PIPELINE NETWORKS

Pre-existing network of gas pipelines connecting air separation units and consumers

SCOPE OF CURRENT WORK

- Consider operation of a network of 4 plants, 3 pipelines, and external sources
- Optimize operations under changing demands and fluctuating electricity prices
- Ensure small solution times for application as a real time optimizing tool
 - Select and tune solvers
 - Reformulate the model to be friendlier to solvers
 - Simplify the model if necessary to account for important interactions while maintaining reasonable complexity

ASSUMPTIONS OF THE MODEL

- Consider operation for a single time period
 - Implemented on a rolling horizon basis
- All demands are necessarily satisfied
- Demands and electricity prices revealed at start of the period
- Instantaneous switching between states

Previous experience at Air Liquide shows presence of multiple local minima. Global optimization techniques essential

GENERIC PLANT DIAGRAM

NETWORK MODEL

- Model for a single column with 40 trays had size 320 differential equations, 1200 algebraic equations (Huang et al., 2013)
- Regression based models developed at Air Liquide
- Nonconvex models necessary to capture system characteristics
- Logic conditions
 - Conjunctions Certain equipment must be used in concert
 - Disjunctions Certain equipment cannot be used together
 - Reformulations with binary variables
- Problem Size ~150 binaries, ~600 continuous variables, ~800 equations

MODEL CHALLENGES

- Infeasibility: combining different submodels led to feasibility issues not easily diagnosed
- Numerics: regression models contained very small (10⁻³¹) as well as very large numbers (10²⁰)
- Nonconvexity: global optimization techniques necessary to ensure we are not trapped by suboptimal solutions
- Combinatorics: presence of integrality restrictions in the model

SIGNIFICANT CONTRIBUTIONS

Infeasibility

- Irreducible Inconsistent Set identification to help speed up diagnosis process for infeasible models
- Novel preprocessing algorithm along with four other filtering algorithms implemented in the IIS isolation module in BARON

Numerics

Model simplification through reformulations and scaling

Combinatorics:

- Solution of MILP relaxations in BARON for stronger lower bounds
- Coefficient reduction, strong branching, cutting planes...

RESULTS

Tests run over 6 different scenarios of demands and other input parameters. Tests were run with an optimality tolerance of 5% and time limit of 3600 seconds

Solver	# of failures/ no solution	# of infeasibility claims	# of times converged within tolerance	Average computation time
Antigone	-	6	-	1
AlphaECP	6	-	-	3600
Lindoglobal	1	-	-	3600
Scip	1	-	-	942
Couenne	1	-	-	3600
SBB	-	6	-	1
DICOPT	-	6	-	1
BARON 14.3	-	-	6	105

CONCLUSIONS

- Developed an optimization model for the operation of a gas pipeline network
- Can quickly and reliably solve the model for multiple scenarios
- Impact for other industrial applications through BARON
 - IIS isolation automates model diagnosis
 - Model reduction and dynamic scaling strategy allows for robust and reliable solutions for regression models frequent in industrial applications
 - MIP relaxations allow faster solutions for difficult nonconvex MINLPs