Capacity Planning with Rational Markets and Demand Uncertainty

By: A. Kandiraju, P. Garcia-Herreros, E. Arslan, P. Misra, S. Mehta & I.E. Grossmann

Motivation

• Capacity planning : Anticipate demands and take investment, expansion and shut down decisions

Market Preferences : Market chooses amongst the various existing suppliers to satisfy its demand Demand Uncertainty : Demands are sensitive to customer needs and economic conditions

- Excess capacity loss of capital investments
- Insufficient capacity loss of market share

Problem statement

- Maximize expected Net Present Value (NPV) by determining optimal capacity planning strategy
- Set of capacitated plants and candidate
 locations for new plant from leading supplier
- Set of plants from independent suppliers
 with limited capacity

- Rational markets that select their suppliers according to their own objective function
- Different demand scenarios that can occur over the time horizon
- Probability of occurrence for each demand scenario

Solution Method

Bilevel optimization

"We want to buy at a low price"

Two-stage Stochastic Programming

1st stage decisions: Capacity Planning decisions for the leader

2nd stage decisions: Demand assignment decisions made by the market

Stochastic Bilevel Model

$max \sum_{t \in T} \left(\frac{1}{(1+R)^t}\right) \left[\left\{ \sum_{i \in I^1} \sum_{k \in K} \sum_{s \in S} \left(\sum_{j \in J \setminus \{j'\}} (P_{t,i,j,k} - G_{t,i,j,k}) - \sum_{j \in J} F_{t,i,k} \right) Pr_s y_{s,t,i,j,k} \right\} - \left\{ \sum_{i \in i^1} (A_{t,i} v_{t,i} + B_{t,i} w_{t,i} + E_{t,i} x_{t,i}) \right\} \right] $ $Pr(s) - Probability of$					
	$w_{t,i} = V_{t,i}^{o} + \sum_{t'=1}^{t} v_{t,i} - \sum_{t'=1}^{t} z_{t,i}$	(∀t ∈ T, i ∈l¹)	Invest or divest in plants	scenario 's' to occur	
	$\sum_{t'=1}^{t} z_{t,i} = 1$	(i <i>є</i> l¹)	Shutdown only once		
	$x_{t,i} \leq w_{t,i}$	(∀t ∈ T, i ∈l¹)	Expand only open plants		
	$c_{t,i} = C_{t,i}^o + \sum_{t'=1}^t H x_{t,i}$	(₩t € T, i ∈l¹)	Capacity expansion	Upper level	
Γ	$\min \sum_{t \in T} \sum_{i \in I^1 \cup I^2 \cup I^3} \sum_{j \in J \setminus \{J'\}} \sum_{k \in K} \frac{1}{(1+R)^t} P$	9 _{t,i,j,k} γ _{s,t,i,j,k} (∀ sε S)	Markets minimize cost paid	maximizes expected	
	$\sum_{j\in J} \sum_{k\in K} y_{s,t,i,j,k} \le M w_{t,i}$	(∀ <mark>s</mark>εS,t ε T, i εl¹)	No sales if plant is closed	NPV of leader	
	$\sum_{j \in J} \sum_{k \in K} y_{s,t,i,j,k} \le c_{t,i}$	(∀ sɛS , t ɛ T, i ɛl¹)	Capacity of plants from leader	Lower level is LP	
	$\sum_{j \in J} \sum_{k \in K} \mathcal{Y}_{s,t,i,j,k} \leq C_{0,i}$	(∀ sɛS , t ɛ T, i ɛl²)	Capacity of independent plants	minimizing costs	
	$-\sum_{j\in J} \mathcal{Y}_{s,t,i,j,k} \leq -Q_{i,k}^{low} \sum_{j\in J} \sum_{k'\in K} \mathcal{Y}_{s,k}$, _{t,i,j,k} ′ (∀ sεS , t ε Τ, i εl,k' εK)	Lower proportion for product	paid by market for each scenario	
	$\sum_{j \in J} \mathcal{Y}_{s,t,i,j,k} \leq Q_{i,k}^{up} \sum_{j \in J} \sum_{k' \in K} \mathcal{Y}_{s,t,i,j,k}$, (∀ sεS , t ε T, i εl,k' εK)	Upper proportion for the product		
	$\sum_{i \in I^1 \cup I^2 \cup I^3} y_{s,t,i,j,k} = D_{s,t,i,k}$	(∀ sɛS , t ɛ T, j ɛJ\{J'}, k ɛK)	All markets are satisfied	/	
	$c_{t,i}, y_{s,t,j,i,k} \ge 0$; $x_{t,i}, v_{t,i}, z_{t,i}$ $w_{t,i} \in$	{0,1}			

Solution methods

Single level reformulation : The lower level optimization problem is **equated to its dual** to transform into single level problem.

Domain reduction strategy : Lower level LP with maximum capacity of leader is solved to determine variables that are never assigned to leader and are fixed to zero.

Lagrangean relaxation : Complicating constraint dualized and solved to obtain UB. Solution from UB fixed and solved with complicating constraint to obtain LB.

Benders decomposition: Iterates between master problem that gives expansion plans with UB and sub-problems give demand assignment decisions with the LB. Optimality cuts from sub-problems added to master problem till convergence.

Results and performance of solution methods

Example-1 (10 time periods)

Example-2 (30 time period)

Deterministic model vs Stochastic model

Hybrid time: First 8 time periods are quarters, rest of 13 time periods are years

2 existing plants of leader, 1 candidate plant, 3 plants of other suppliers, 10 markets, 2 products, <u>21 hybrid time periods</u>, 3 scenarios

Deterministic model solution: Expands in 1st, 5th, 9th time periods Stochastic model solution: Expands in 1st, 9th time periods

Model	Deterministic model	Stochastic model	
Results	under uncertainty	under uncertainty	
(NPV)			
Scenario 1	\$408 M 🔻	\$ 453 M 🛆	
Scenario 2	\$574 M 🔻	\$599 M	
Scenario 3	\$ 610 M	\$565 M 🔻	
Expected NPV	\$ 530.5 M	\$ 539 M	

\$ 8.5 M higher expected NPV

Novelty

- MILP two stage stochastic program with a bi-level optimization model for capacity expansion
- Considers both conflicting interest of producers and markets and also uncertainty in demands
- Allows to reduce capacity by shutdown of unprofitable plants
- Flexibility in production ratios of products

Conclusions

Stochastic model gives higher expected NPV than deterministic model

Takes decisions by considering rational markets and mitigates risks due to uncertainty in demands

Future work

Strategies to solve large problems within reasonable computational time

Multistage stochastic programming model for modeling uncertainties more accurately

