

Bi-level Optimization for Capacity Planning in Industrial Gas Markets

P. Garcia-Herreros, E. Arslan, P. Misra, & I.E. Grossmann

EWO Meeting September, 2014

Motivation

Industrial gas markets are dynamic:

- Suppliers must anticipate demand growth
- Most markets are served locally

Capacity expansion is a major strategic decision:

- Requires large investment cost
- Benefits are obtained over a long horizon

Benefits are sensitive to market behavior:

- Market preferences
- Economic environment

Sensitivity can be reduced by assuming rational behavior:

- Producers try to maximize their profit
- Markets try to minimize their cost

Need to model the conflicting interests of producer and markets

Optimization

Bilevel optimization

Problem Statement

Given:

- Set of capacitated plants and candidate locations for new plants from leading supplier
- Set of plants from independent suppliers with limited capacity
- Rational markets that select their suppliers according to their own objective function
- Deterministic demands over the time horizon

Maximize net present value (NPV):

- Determine expansion plan
- Considering optimal distribution strategy in each time-period

Bilevel Approach (MILP)

Capacity expansion planning with rational market:

Plants are divided in two: plants from leading supplier (I^1) and plants from independent suppliers (I^2)

$$\begin{array}{ll} \max \ NPV = \sum_{t \in T} \frac{1}{(1+R)^t} \left\{ \sum_{i \in I^1} \sum_{j \in J} P_{t,i,j} y_{t,i,j} - \sum_{i \in I^1} \left[A_{t,i} v_{t,i} + B_{t,i} w_{t,i} + E_{t,i} x_{t,i} + \sum_{j \in J} (E_{t,i} y_{t,i,j} + G_{t,i,j,k} y_{t,i,j}) \right] \right\} \\ \text{s.t.} \ w_{t,i} = V_{t,i}^0 + \sum_{t'=1}^t v_{t,i} \qquad (\forall t \in T, i \in I^1) \quad \text{Invest in new plants} \\ x_{t,i} \leq w_{t,i} \qquad (\forall t \in T, i \in I^1) \quad \text{Expand only open plants} \\ c_{t,i} = C_{t,i}^0 + \sum_{t'=1}^t H x_{t-1,i} \qquad (\forall t \in T, i \in I^1) \quad \text{Capacity expansion} \\ \end{array}$$

$$\begin{array}{l} \min \ \sum_{t \in T} \frac{1}{(1+r)^t} \left[\sum_{j \in J} \sum_{i \in I} P_{t,i,j} y_{t,i,j} \right] \\ \text{s.t.} \ \sum_{j \in J} y_{t,i,j} \leq c_{t,i} \qquad (\forall t \in T, i \in I^1) \quad \text{Markets minimize cost paid} \\ \sum_{j \in J} y_{t,i,j} \leq C_{t,i} \qquad (\forall t \in T, i \in I^2) \quad \text{Capacity of plants from leader} \\ \sum_{i \in I} y_{t,i,j} = D_{t,j} \qquad (\forall t \in T, j \in J) \quad \text{Capacity of independent plants} \\ c_{j,k}, y_{s,j,i,k} \geq 0; \ v_{t,i}, \ w_{t,i}, \ x_j \in \{0,1\} \quad (\forall t \in T, i \in I, j \in J) \quad \text{All markets are satisfied} \end{array}$$

KKT Reformulation

Transform to single-level by using KKT conditions of lower-level problem

The optimal solution for LP: Can be obtained by solving: $c_k + \sum_{i=1}^{|I|} a_{k,i} \mu_i + \sum_{i=1}^{|J|} b_{k,j} \lambda_j = 0$ k=1,...,|K| Stationarity min $\sum_{k=1}^{|K|} c_k x_k$ s.t. $\sum_{k=1}^{|K|} a_{k,i} x_k \le a_0$ (μ_i) i=1,...,|I| $\sum_{k=1}^{|K|} a_{k,i} x_k \le a_0$ i=1,...,|I| Primal feasibility j=1,...,|I| Dual feasibility $\sum_{k=1}^{|K|} b_{k,j} x_k = b_0 \qquad (\lambda_j) \qquad j=1,...,|J| \qquad \sum_{k=1}^{K} b_{k,j} x_k = b_0$ $x_k \in R \qquad \qquad k=1,...,|K| \qquad \mu_i \ge 0$ $\mu_i \left(\sum_{k=1}^{K} a_{k,i} x_k - a_0 \right) = 0 \qquad i=1,...,|I| \qquad \begin{array}{c} \text{Complementary} \\ \text{slackness} \end{array}$ $x_k, \lambda_i \in R$ k=1,...,|K|; j=1,...,|]|

Complementary slackness can be transformed to disjunctive constraints:

$$\sum_{k=1}^{|K|} a_{k,i} x_k - a_0 - s_i = 0$$

[s_i = 0] \lor [$\mu_i = 0$]

Use MILP reformulation

Primal-Dual Reformulation

Transform to single-level optimization problem using strong duality:

Optimal objective value of the primal and dual formulations for LP lower-level problems is the same

Primal formulation:

$$\min \sum_{k=1}^{|K|} c_k x_k$$
s.t.
$$\sum_{k=1}^{|K|} a_{k,i} x_k \le a_{0,i} \quad (\mu_i) \quad i=1,...,|I|$$

$$x_k \in R \qquad \qquad k=1,...,|K|$$

Dual formulation:

$$\max \sum_{i=1}^{|I|} a_{0,i} \mu_i$$

s.t.
$$\sum_{i=1}^{|I|} a_{k,i} \mu_i = c_k \qquad k=1,...,|K|$$
$$\mu_i \in R^+ \qquad i=1,...,|I|$$

The optimal solution in the lower-level can be obtained by enforcing:

$\sum_{k=1}^{ K } c_k x_k = \sum_{i=1}^{ I } a_{0,i} \mu_i$	}	Strong duality	<mark>Remark:</mark> Upper-level variables are
$\sum_{k=1}^{ K } a_{k,i} x_k \le a_{0,i} i=1,, I $	}	Primal feasibility	considered parameters for the lower-level problem. However, when transformed to single-level
$\sum_{i=1}^{ I } a_{k,i} \mu_i = c_k \qquad k=1,\dots, K $ $\mu_i \in R^+$	}	Dual feasibility	problem, bilinearities might appear. <i>Exact linearization</i> can be used for discrete capacities. Garces et al, 2009

Illustrative Example

Problem structure:

- 3 existing plants which can be expanded
- 1 new candidate plant
- 3 existing plants which can not be expanded
- 15 markets with deterministic demand for 1 commodity
- 20 time-periods (quarters)

Formulations:

- Single-level (SL): leader selects the markets to satisfy
- Single-level evaluation (*SL-eval*): evaluation of single-level investment decisions in a market driven environment
- Bilevel KKT (*KKT*): KKT reformulation of the bilevel problem
- Bilevel Primal-Dual (*P-D*): Primal-dual reformulation of the bilevel problem

Results

Computational statistics:

Statistics	SL	SL-eval	KKT	P-D
No. of constraints:	680	520	8,460	4,380
No. of continuous variables:	2,240	2,240	6,060	4,220
No. of binary variables:	240	0	3,080	240
Solution time (CPLEX):	0.10 s	0.02 s	193 s	5.72 s
Optimality gap:	0.1%	0.1%	0.1%	0.1%
Results:				
Items of objective function	SL	SL-eval	KKT	P-D
Income from sales [MM\$]:	1,171	805	794	794
Investment in new plants [MM\$]:	0	0	0	0
Capacity expansion cost [MM\$]:	199	199	58	58
Maintenance cost[MM\$]:	94	94	94	94
Production cost[MM\$]:	424	292	279	279
Transportation cost[MM\$]:	14	8	9	9
Total NPV [MM\$]:	440	212	354	354
Market cost[MM\$]:	1,239	1,234	1,234	1,234

Bilevel optimization yields 67% higher NPV (354 vs 212 million) when compared to single-level expansion strategy

Conclusions

Novelty:

- MILP bi-level optimization model for capacity expansion
- Considers the conflicting interest of producers and markets
- Models market behavior according to their interests
- Alternative Primal-Dual reformulation with better computational performance

Industrial Impact:

- Allows developing capacity expansion plans that are less sensitive to changing business environments
- Determines expansion plan based on market preferences
- Reduces variability of business performance
- Avoids overestimating expansion

Future Work

- Decomposition strategy for large-scale problems
- Constraint the proportion in which different products can be produced
- Allow to reduce capacity and shut-down of plants
- Model expansion of plants from independent providers