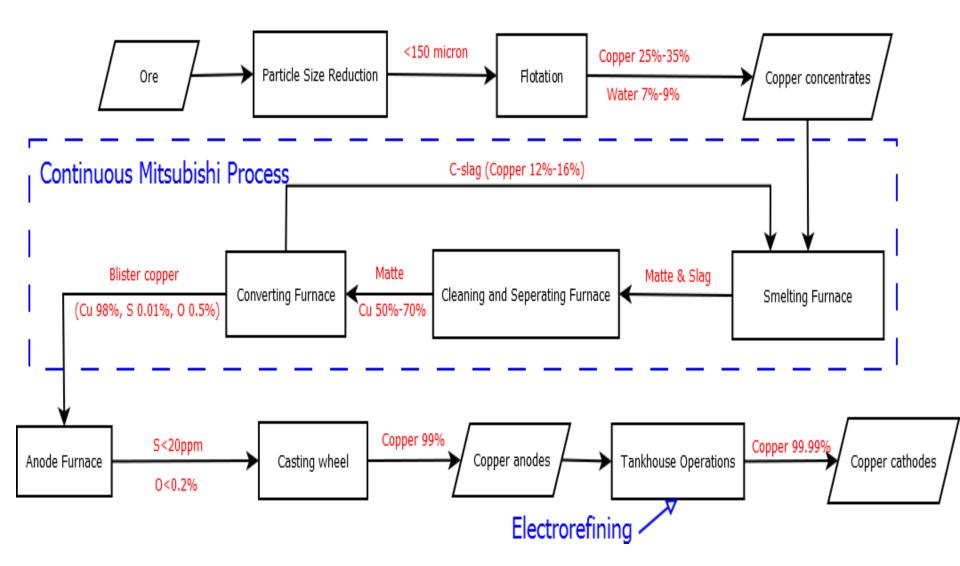
Carnegie Mellon University

Development of process models for copper production, processing and recycle

Presenter Yingkai Song Advisor Prof. Ignacio E. Grossmann Prof. Lorenz T. Biegler

www.cmu.edu

Motivation


Implement a modelling and optimization tool for demand side management, higher purity of copper cathodes (>99.99%), lower energy consumption and environmentally friendly process.

Focus currently

• Establish process flowsheet

• Simulation of Smelting furnace

Main parts for copper process

- From ore to copper concentrates Grinding and Flotation
- From copper concentrates to copper cathodes
 Continuous Mitsubishi Process → Smelting Furnace
- From copper anodes to copper cathodes Electrorefining

Simulation of Smelting Furnace

- Main reaction CuFeS2 + O2 +SiO2→(Cu,Fe,S)(matte) + FeO • SiO2(slag) + SO2
- T = 1230C P = 1atm
- Predict product composition and distribution in multiple phase (matte/slag/gas)

Simulation of Smelting Furnace

• Method: Gibbs Energy Minimization

$$G = \sum_{p=1}^{\phi} \sum_{i=1}^{N} n_{i,p} \left(\Delta G_{fi}^0 + RT ln f_i^p \right)$$
(1)

• Constraints:

Reaction equilibrium : atom balance Multiphase equilibrium : phase balance Nonideal liquid mixture : interaction of molecule

Simulation of Smelting Furnace

• Thermodynamic approach: Gas: Ideal gas mixture.

Liquid: Modified Quasichemical formalism

• Data sources:

Thermodynamic Database for the Cu-Fe-O-S-Si system in FACTSAGE

Preliminary results: Assumption: Ideal solution

Substance	inlet mole flow (kmol/hr)	Outlet mole flow (kmol/hr)	
Main reactants			1
CuFeS2	489.1304	67.605	
O2	1000	0	
SiO2	500	300.455	1
	Matte		
Cu2S	-	211.633	
FeS	-	24.176	
Slag			
Fe2SiO4	-	199.835	Trade off!
FeO	-	0.0002804	
Cu2O	-	0	-
	Off gas		
SO2	-	610.723	
N2	1000	1000	
	Min Gibbs = -8.654E02GJ		

Conversion of CuFeS2 = 86.18%

Future work

- Simulate Smelting furnace based on nonideal solution
- Address models of remaining major units
- Complete mass and energy balance of entire process
- Determine prediction of power consumption

Carnegie Mellon University

Thank you!

www.cmu.edu