
Production Planning with
Uncertain Power Supply

Lehigh University

∣

∣

∣

∣

Pietro Belotti Çağrı Latifoğlu
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Setting

◮ Two plants, two products

◮ Each has an inventory with given maximum capacity

◮ Customer demand known for every time bucket

⇒ Plan production at each time bucket

... while minimizing total prod./inv. cost



Classical (non-robust) production planning

◮ Variables: production prot,p,s, inventory invt,p,s.

◮ Constraints: for all t ∈ T, p ∈ {P1, P2}, s ∈ {S1, S2}:
◮ Production capacity: prot,p,s ≤ Cpro

◮ Inventory capacity: invt,p,s ≤ Cinv

◮ Conservation: prot,p,s + invt−1,p,s = demt,p,s + invt,p,s

t

invt−1,p,s invt,p,s

prot,p,s

demt,p,s

◮ Obj. function:
∑

t,p,s(cprod · prot,p,s + cinv · invt,p,s)



Disruptions

Both plants are subject to power interruptions.

Part of a “flexible supply” contract with the power company.
Clauses might specify

◮ How many interruptions there might be

◮ Duration (# time buckets)

◮ What plant(s) are affected

However,

◮ Short notice (≈ hours, even minutes)

◮ Unknown duration (apart from per-contract limits)



Uncertainty in power interruptions

Optimization problems under uncertainty may be dealt with

◮ Robust Optimization1: ideal when uncertainty is limited

but the scenarios seem all equally likely.

◮ Stochastic Programming2: more suited when a probability
distribution is known.

Our case is prototypical for Robust Optimization: there are a
few interruptions which, however, are all equally likely.

1A. Ben-Tal, L. El Ghaoui, A. Nemirovski, Robust Optimization. Princeton
Univ. Press, 2009. http://sites.google.com/site/robustoptimization

2J.R. Birge, F. Louveaux, Introduction to Stochastic Programming,
Springer, 1997.

http://sites.google.com/site/robustoptimization


Robust model

Production prot,p,s is influenced by an opponent that can shut
off a plant under certain conditions.

min
∑

t,p,s(cprod · prot,p,s + cinv · invt,p,s)

[production constraints]
[inventory constraints]
minU{prod. of S at time T} ≥ demTS



Opponent’s problem

The inner problem is a worst-case estimate of the production
plan at every time bucket. Its objective function value

z(pro) = min
U

{prod. of S at time T}

depends on the production levels, but has to be computed by
implicitly solving the optimization problem



Robust model

Some remarks:

◮ The “opponent” decides when to shut off a plant,

... while respecting some sort of “terms” of uncertainty.

◮ In general, the opponent will try to give us a hard time

⇒ we need a plan so that customer demands are met,

... no matter what the opponent decides



Duality trick

Soyster 19733: “solve” the inner problem by taking its dual.

min
∑

t,p,s(cprod · prot,p,s + cinv · invt,p,s)

[prod. constraints], [inv. constraints]
min{c⊤x : Ax ≥ b, x ∈ R

n
+} ≥ dTS

⇓

min
∑

t,p,s(cprod · prot,p,s + cinv · invt,p,s)

[prod. constraints], [inv. constraints]
max{u⊤b : u⊤A ≤ c, u ∈ R

m
+} ≥ dTS

3A.L. Soyster, “Convex Programming with set-inclusive constraints and
applications to inexact LP,” Operations Research 21(5), 1973, pp. 1154-1157.
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Inner optimization model(s)

The opponent acts at every time bucket and for both products
by “solving” a minimization problem for every T and S.

(Opponent’s) variables are xtp ∈ {0, 1}: one if plant p is shut
down at time bucket t, zero otherwise.

PTS : min f (pro, x)
∑n

t=1(xt1 + xt2) ≤ K
xt1 + xt2 ≤ 1
xtp ∈ {0, 1}

Production levels pro are parameters in the inner problem,
while x are the variables



Solving the robust model

◮ LP Duality allows to implicitly solve the above problem

◮ We know what the opponent wants, and we can model it

◮ The inner problem is a Mixed Integer Linear Program

⇒ It needs to be strengthened

This can be done by

◮ cut separation in the inner problem’s primal, or

◮ column generation in its dual

Can significantly improve the total cost



Test #1: production levels

◮ Two plants, two products, 14 time buckets.
◮ K: max. number of interruptions (≈ uncertainty level).
◮ More interruptions → production “spreads” over time

t K = 0 1 2 3 4 5 6
1 100 100 100 100 100 100 100
2 106 106 106 106 106 106 106
3 130 130 130 130 130 130 130
4 99 142 138 141 131 118 124
5 210 168 172 168 178 192 185
6 149 149 149 149 149 149 185
7 111 111 111 111 111 192 185
8 130 130 130 130 178 192 185
9 153 153 153 153 178 192 185

10 92 92 92 168 178 192 185
11 96 96 165 168 178 192 185
12 134 134 172 168 178 192 198
13 112 168 172 168 178 198 198
14 112 168 172 198 198 198 198



Test #2: policy vs. production cost

Two plants, two products, 14 time buckets. Cost is normalized
to 1 (for K = 0, i.e., no interruptions).

◮ K: max. number of
interruptions (≈
uncertainty level).

◮ Blue (upper curve): cost
with less accurate
model, purple (lower):
more accurate

◮ Real cost: between
purple line and Cost=1
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Current steps

◮ Integrating simulation with optimization
◮ Try several uncertainty sets (contract policies), e.g.

1. interruptions allowed at one plant only
2. not more than k interruption over n time buckets


