

C3 Feedstock Optimization for Multiproduct Polypropylene Production

Pablo A. Marchetti, Ignacio E. Grossmann

Department of Chemical Engineering Carnegie Mellon University

Wiley A. Bucey, Rita A. Majewski

Braskem America

Center for Advanced Process Decision-making Enterprise-Wide Optimization (EWO) Meeting – March 12-13, 2013

Project Overview

Polypropylene production facility

- Chemical and refinery grade feedstocks with different prices and propylene purities.
- Best operation will balance production rate with costs of feedstocks, maximizing plant throughput.

Project Overview

Polypropylene production facility

- Chemical and refinery grade feedstocks with different prices and propylene purities.
- Best operation will balance production rate with costs of feedstocks, maximizing plant throughput.
- Objectives:
 - Development of a Non-linear Programming (NLP) model to maximize benefits by obtaining a better balance of RG and CG feedstocks for single or multiple production orders.
 - Determine operation rates for a schedule of multiple production orders within a 3-month timeframe.
 - Implement user-friendly interface (GAMS model / MS-Excel)

Process and Problem Description

Process and Problem Description

Process and Problem Description

Goal: Select optimal mix of chemical and refinery grade propylene

Mathematical Model (NLP)

- Maximize Profit
- Constraints on each time interval:
 - Material balances
 - Min/Max flow rates
 - Constraints on composition of Propane Return, Distillation Overhead & Reactor Feed
 - Limits on catalyst yield and flow
 - Availability of Chemical Grade
 - Specifications on splitter feed and recycle rate
- Decision variables:
 - Production rate of polypropylene
 - RG and CG feedrates
 - Distillation overhead flow and composition
 - Reactor feed and catalyst flow

Single/Multiple Product Models

Single/Multiple Product Models

- Single Product Model (one time interval)
 - Maximize profit in terms of \$/hr
 - Best production rate with minimum cost of feedstocks.
 - Model size: 149 variables, 146 constraints
 - Solved with CONOPT and BARON in less than I CPU s.

Single/Multiple Product Models

- Single Product Model (one time interval)
 - Maximize profit in terms of \$/hr
 - Best production rate with minimum cost of feedstocks.
 - Model size: 149 variables, 146 constraints
 - Solved with CONOPT and BARON in less than I CPU s.

• Multiple Product Model

- Multiple orders of different products
- Production sequence given beforehand
- Profit (\$) = selling prices feedstock costs

+ propane return – others

- Solution gives best production rates with minimum costs for each product
- Products of the same family feature same kinetic properties.
- Aggregation/disaggregation allows to handle large scale test cases.

Objective:

- Approximate procedure that provides overall treatment of the distillation (no details about flows, composition, temperatures, etc. for each individual tray)
- The number of variables and constraints must remain small

Objective:

- Approximate procedure that provides overall treatment of the distillation (no details about flows, composition, temperatures, etc. for each individual tray)
- The number of variables and constraints must remain small

Objective:

- Approximate procedure that provides overall treatment of the distillation (no details about flows, composition, temperatures, etc. for each individual tray)
- The number of variables and constraints must remain small

Parameterization and Validation

Parameterization and Validation

Initial linear correlation based on plant data

Degrees of freedom:

- Reflux rate
- Bottoms composition

Additional Assumptions

- Fixed pressure for the whole column = 9.778 atm
- Total condenser (top)
- Total reboiler (bottom)
- Single feed

- Parameters
- Product and product family data
- Schedule

Aggregation / disaggregation procedure

- General results
- Detailed results

- Parameters
- Product and product family data
- Schedule

Aggregation / disaggregation procedure

- General results
- Detailed results

Mid-size example (20 products, 5 families)

- Model size: 750 variables, 736 constraints
- Solved by CONOPT in ~9 seconds.
- Preliminary results show realistic tradeoff on feedstocks costs vs production rates (depending on available time).

User interface for GAMS multiple-product model developed in MS Excel

	A	B	С	D	E	F	G	Н	1	J	K	
1												
2	Braskem /	America - Nea	l Plant									
3	3 Feedstock Optimi			zation Mod	el			Т	ime Horizon:	50	days	
4									1			
5	5 Schedule Data			Schedule Results			17-Jun, 08:30 AM	Add SLACK Product			~	
6												
7	Order	Product	# Cars	Start Time	Duration	Production Rate	Profit		Dun Foodst	o de N	ladal	
8				(date & time)	(hs)	(lbs/hr)	(\$)		Kun reeust	OCK IV	louel	
9	1	#####	10	dd-mmm, hh:mm	##.##	##,###.##	###,###.##					
10	2	######	10	dd-mmm, hh:mm	##.##	##,###.##	###,###.##		Update	Resul	ts	
11	3	######	34	dd-mmm, hh:mm	###.##	##,###.##	###,###.##					
12	4	####	2	dd-mmm, hh:mm	#.##	##,###.##	##,###.##					
13	5	#######	8	dd-mmm, hh:mm	##.##	##,###.##	##,###.##					
14	6	####	2	dd-mmm, hh:mm	#.##	##,###.##	##,###.##					
15	7	######	30	dd-mmm, hh:mm	##.##	##,###.##	###,###.##					
16	8	####	2	dd-mmm, hh:mm	#.##	##,###.##	##,###.##					
17	9	#######	14	dd-mmm, hh:mm	##.##	##,###.##	###,###.##					
18	10	######	10	dd-mmm, hh:mm	##.##	##,###.##	###,###.##					
19	11	#######	4	dd-mmm, hh:mm	##.##	##,###.##	##,###.##					
20	12	####	2	dd-mmm, hh:mm	#.##	##,###.##	##,###.##					
21	13	#####	12	dd-mmm, hh:mm	##.##	##,###.##	###,###.##					
22	14	#######	7	dd-mmm, hh:mm	##.##	##,###.##	##,###.##					

User interface for GAMS multiple-product model developed in MS Excel

	A	B	C	D	E	F	G	H			J	K				
1																
2	Braskem A	America - Neal	Plant													
	Food	to alt O		ation Mad												
3	reeas	SLOCK O	pumi	zation mod	lei				Time	Horizon: 5	0 davs					
4										· · · · · · · · · · · ·						
5 Schedule Data			Schedule Results			17-Jun, 08:30 AM		Add	SLACK Produc	(Product 🔽						
6																
7	Order	Product	# Cars	Start Time	Duration	Production Rate	Profit				la Manada I					
8				(date & time)	(hs)	(Ibs/hr)	(\$)		H	un Feedstoc	k wodei					
9	1	#####	10	dd-mmm, hh:mm	##.##	##,###.##	###,###.##									
10	2	######	10	dd-mmm, hh:mm	##.##	##,###.##	###,###.##		Update Results							
11	3	######	34	dd-mmm, hh:mm	###.##	##,###.##	###,###.##									
12	4	####	2	dd-mmm, hh:mm	#	٨	B C		D F		F	6		н	1	1
13	5	#######	8	dd-mmm, hh:mm	#1	<u>^</u>	0			-		0				-
14	6	####	2	dd-mmm, hh:mm	#	Mutiple	nnoduat Eo	oda	toal	Modo		Failed		aulta		
15	7	######	30	dd-mmm, hh:mm	#: 1	Muupie-	product Fe	eus	LOCE	(Mode	I - De	taneu	i kes	suits		
16	8	####	2	dd-mmm, hh:mm	# 2											
17	9	#######	14	dd-mmm, hh:mm	#	Time Horizon =	Time Horizon = 50 days									
18	10	######	10	dd-mmm, hh:mm	# _	TINAC	TIME CLOTC			2	2				6	7
19	11	#######	4	dd-mmm, hh:mm	#1 6	TIVE			1	2	3	4		3	0	,
20	12	####	2	dd-mmm, hh:mm	# 7	Production	Requirements									
21	13	#####	12	dd-mmm, hh:mm	#1.8	Product	Product			*******			##	******		******
22	14	#######	7	dd-mmm, hh:mm	#1 9	Product Family		####			####	###		****	****	****
					10	# Cars			10	10		34	2	8	2	30
					11											
					12	Results	Summary									
	13 Production rate (lb/hr) ##,###							##,###	##,#	## #	##,###	##,###	##,###	##,###		
					14	Time (hr)			##.##	##.##	###	##	#.##	##.##	#.##	##.##
					15	Lbs of product		#,	***,***	#,###,###	#,###,#	## ##	##,###	#,###,###	###,###	#,###,###
					16	D - flar -										
	1/ Ketinery Grade															
					10	% propulepe			** ****	## #####						
					20	lbs/hr			##,###	**.***	##.#		**.***	**.***	##,###	**.***
					21	lbs/hr propane			#,###	#,###	#,#	##	#,###	#,###	#,###	#,###
					22	lbs/hr propylene			##,###	##,###	##,#	## #	##,###	##,###	##,###	##,###
					23	Chemic	al Grade									
					24	% propane			##.####		##.#### ##.####		8.8888	**.****	##.####	##.####
					25	% propylene			##.####	##.####	##.##	## ##	#.####	##.####	##.####	##.####
					26	lbe /be			** ***	** ***	***				*** ****	

	А	В	С	D	E	F	G	Н		1.1	1	К			
1	Braskom	Amorica Nor	Diant												
2		America - Nea													
з	Feed	stock O	ptimi	zation Mod	lel				Timo	Horizon: 50) daw				
4									mine		uays				
5	Schedule [Data		Schedule Results			17-Jun, 08:30 AM		Add	SLACK Produc	t 🔽				
6															
7	Order	Product	# Cars	Start Time	Duration	Production Rate	Profit		B	un Feedstoc	k Model				
8				(date & time)	(hs)	(Ibs/hr)	(\$)			.unrecustori	- mouch				
9	1	#####	10	dd-mmm, hh:mm	##.##	##,###.##	###,###.##								
10	2	######	10	dd-mmm, hh:mm	##.##	##,###.##	###,###.##		Update Re		sults				
11	3	######	34	dd-mmm, hh:mm	###.##	##,###.##	###,###.##								
12	4	####	2	dd-mmm, hh:mm	#	A	3 C	[D	E	F	G	Н	I.	J
13	5	#######	8	dd-mmm, hh:mm	#1										
14	6	####	2	dd-mmm, hh:mm	# 1	Mutiple-	product Fe	eds	tocl	x Mode	l - De	tailed	Results		
15	7	######	30	dd-mmm, hh:mm	#1 2	inderpro j	producere	cab		rnoue			rebuild		
16	8	####	2	dd-mmm, hh:mm	# 3	Time Horizon = 5									
17	9	#######	14	dd-mmm, hh:mm	#1 4										
18	10	######	10	dd-mmm, hh:mm	#1 5	TIME	1	1	2	3	4	5	6	7	
19	11	#######	4	dd-mmm, hh:mm	#1 6										
20	12	####	2	dd-mmm, hh:mm	# 7	Production R	equirements								
21	13	#####	12	dd-mmm, hh:mm	#1 8	Product		###	###	******	******	#####	*******	****	######
22	14	#######	7	dd-mmm, hh:mm	#1 9	Product Family		##	##	####	####	####	####	####	####
					10	# Cars			10	10		34	2 8	2	30
					11	Poculto									
			Fyce			Production rate (Ib	##.###		##,###	##,1			##,###	##,###	
			LAC			ime (hr)	.,,		##.##	##.##	###	##	8.88 88.88	#.##	##.##
						oroduct		#,#	***,***	*,***,***	#,###,#	** ***	,888 8,888,888	***,***	#,###,###
/			GD			Refiner	y Grade								
									******	******	##.##	## ##.		******	##.####
									******			** ***	***		*******
			N II I			opane			8,888	#,###	#.#			#.###	
			INL	P Imodel		propylene			##,###	##,###	##,#	## ##	,### ##,###	##,###	##,###
	$\langle \rangle$		-			Chemica	al Grade								
			C C	CI'IAc		% propane		;	10.0000	##.####	##.##	## ##.		##.####	##.####
		\sim				% propylene		#	*#.####	##.####	##.##	## ##.!		##.####	##.####
					26	lbe /be			** ***						

Conclusions and Future Work

CONCLUSIONS

- Multiple-product feedstock optimization nonlinear programming model developed. Process models include distillation and polymerization units.
- Proposed method handles gain/loss scenarios and large schedules (through aggregation/disaggregation).
- Distillation model formulated using aggregated group-method based on work of Kamath et al. 2010.
- Deployment of computational tool to assess monthly feedstock purchase decisions.
- Initial tests show large potential for savings in feedstock cost.

Conclusions and Future Work

CONCLUSIONS

- Multiple-product feedstock optimization nonlinear programming model developed. Process models include distillation and polymerization units.
- Proposed method handles gain/loss scenarios and large schedules (through aggregation/disaggregation).
- Distillation model formulated using aggregated group-method based on work of Kamath et al. 2010.
- Deployment of computational tool to assess monthly feedstock purchase decisions.
- Initial tests show large potential for savings in feedstock cost.

FUTURE WORK

• Improvements on distillation model parameters.

O

C3 Feedstock Optimization for Multiproduct Polypropylene Production

Pablo A. Marchetti, Ignacio E. Grossmann

Department of Chemical Engineering Carnegie Mellon University

Wiley A. Bucey, Rita A. Majewski Braskem America

Thanks for your attention! Questions?