C3 Feedstock Optimization
for Multiproduct Polypropylene Production

Pablo A. Marchetti, Ignacio E. Grossmann
Department of Chemical Engineering
Carnegie Mellon University

Wiley A. Bucey, Rita A. Majewski
Braskem America

Center for Advanced Process Decision-making
Enterprise-Wide Optimization (EWO) Meeting – March 12-13, 2013
Project Overview

Polypropylene production facility

- Chemical and refinery grade feedstocks with different prices and propylene purities.
- Best operation will balance production rate with costs of feedstocks, maximizing plant throughput.
Project Overview

Polypropylene production facility

- Chemical and refinery grade feedstocks with different prices and propylene purities.
- Best operation will balance production rate with costs of feedstocks, maximizing plant throughput.

- Objectives:
 - Development of a Non-linear Programming (NLP) model to maximize benefits by obtaining a better balance of RG and CG feedstocks for single or multiple production orders.
 - Determine operation rates for a schedule of multiple production orders within a 3-month timeframe.
 - Implement user-friendly interface (GAMS model / MS-Excel)
Process and Problem Description

Chemical Grade (CG)
- ~95% propylene

Refinery Grade (RG)
- ~79% propylene

Propylene (91%)

Distillation

Catalyst

Polymerization

Polypropylene

Reactor effluent

Feed Tank

Propane return
Process and Problem Description

Chemical Grade (CG)
- ~95% propylene
- Expensive

Refinery Grade (RG)
- ~79% propylene
- Cheaper
Goal: Select optimal mix of chemical and refinery grade propylene
Mathematical Model (NLP)

- Maximize Profit

- Constraints on each time interval:
 - Material balances
 - Min/Max flow rates
 - Constraints on composition of Propane Return, Distillation Overhead & Reactor Feed
 - Limits on catalyst yield and flow
 - Availability of Chemical Grade
 - Specifications on splitter feed and recycle rate

- Decision variables:
 - Production rate of polypropylene
 - RG and CG feedrates
 - Distillation overhead flow and composition
 - Reactor feed and catalyst flow
Single/Multiple Product Models
Single/Multiple Product Models

- **Single Product Model** (one time interval)
 - Maximize profit in terms of $/hr
 - Best production rate with minimum cost of feedstocks.

- Model size: 149 variables, 146 constraints
- Solved with CONOPT and BARON in less than 1 CPU s.
Single/Multiple Product Models

- **Single Product Model** (one time interval)
 - Maximize profit in terms of $/hr
 - Best production rate with minimum cost of feedstocks.
 - Model size: 149 variables, 146 constraints
 - Solved with CONOPT and BARON in less than 1 CPU s.

- **Multiple Product Model**
 - Multiple orders of different products
 - Production sequence given beforehand
 - Profit ($) = selling prices – feedstock costs
 + propane return – others
 - Solution gives best production rates with minimum costs for each product
 - Products of the same family feature same kinetic properties.
 - Aggregation/disaggregation allows to handle large scale test cases.

Models implemented with GAMS
Distillation Model

Objective:

- Approximate procedure that provides overall treatment of the distillation (no details about flows, composition, temperatures, etc. for each individual tray)
- The number of variables and constraints must remain small
Distillation Model

Objective:

- Approximate procedure that provides overall treatment of the distillation (no details about flows, composition, temperatures, etc. for each individual tray)
- The number of variables and constraints must remain small

Aggregated group-method of Kamath et al. (2010)

Kamath, Grossmann and Biegler (2010)
Comp. and Chem. Eng. 34, pp. 1312-1319
Distillation Model

Objective:

• **Approximate procedure that provides overall treatment of the distillation** (no details about flows, composition, temperatures, etc. for each individual tray)

• **The number of variables and constraints must remain small**

Aggregated group-method of Kamath et al. (2010)

- Tray-by-Tray Method (Rigorous)
- Group-Method (Approximate)

C3 Splitter modeled with Group-Method

Kamath, Grossmann and Biegler (2010)

Comp. and Chem. Eng. 34, pp. 1312-1319
Distillation Model

Parameterization and Validation

Initial linear correlation based on plant data
Distillation Model

Parameterization and Validation

Initial linear correlation based on plant data

Degrees of freedom:
- Reflux rate
- Bottoms composition

Additional Assumptions
- Fixed pressure for the whole column = 9.778 atm
- Total condenser (top)
- Total reboiler (bottom)
- Single feed
Distillation Model

Parameterization and Validation

Initial linear correlation based on plant data

Degrees of freedom:
• Reflux rate
• Bottoms composition

Additional Assumptions
• Fixed pressure for the whole column = 9.778 atm
• Total condenser (top)
• Total reboiler (bottom)
• Single feed

Comparison of different column efficiencies against rigorous tray-by-tray simulations (Aspen HySys)

Group-method

HySys simulations
Multiple Product Model

- Parameters
- Product and product family data
- Schedule

Aggregation / disaggregation procedure

- General results
- Detailed results
Multiple Product Model

- Parameters
- Product and product family data
- Schedule

Aggregation / disaggregation procedure

- General results
- Detailed results
Multiple Product Model

- Parameters
- Product and product family data
- Schedule

Aggregation / disaggregation procedure

 Aggregate products by family

 Solve single-product model for each family

 Solve multiple-product model

- General results
- Detailed results

Disaggregate results
Multiple Product Model

- Parameters
- Product and product family data
- Schedule

Aggregation / disaggregation procedure

- Solve single-product model for each family
- Solve multiple-product model

- Aggregate products by family

Schedule requirements

- General results
- Detailed results

Disaggregate results
Multiple Product Model

- Parameters
- Product and product family data
- Schedule

Aggregation / disaggregation procedure

- General results
- Detailed results

Schedule requirements

Aggregate products by family

Solve single-product model for each family

Solve multiple-product model

Disaggregate results

Aggregated schedule
Multiple Product Model

- Parameters
- Product and product family data
- Schedule

Aggregation / disaggregation procedure

- Aggregate products by family
- Solve single-product model for each family
- Solve multiple-product model

- Schedule requirements
- Initial solution
- Disaggregate results

- General results
- Detailed results
Multiple Product Model

- Parameters
- Product and product family data
- Schedule

Aggregation / disaggregation procedure

- Schedule requirements
- Aggregate products by family
- Solve single-product model for each family
- Aggregated schedule
- Initial solution
- Solve multiple-product model

Results

- General results
- Detailed results
- Disaggregate results
- Aggregated multiple-product solution
Multiple Product Model

- Parameters
- Product and product family data
- Schedule

Aggregation / disaggregation procedure

- Schedule requirements
- Aggregate products by family
- Solve single-product model for each family
- Aggregated schedule

Solve multiple-product model
- Initial solution
- Detailed schedule results
- Detailed results

General results
- Disaggregate results
- Aggregated multiple-product solution
Multiple Product Model

- Parameters
- Product and product family data
- Schedule

Aggregation / disaggregation procedure

- General results
- Detailed results

Schedule requirements

Aggregate products by family

Solve single-product model for each family

Aggregated schedule

Initial solution

Solve multiple-product model

Disaggregate results

Detailed schedule results

Aggregated multiple-product solution

Mid-size example (20 products, 5 families)
- Model size: 750 variables, 736 constraints
- Solved by CONOPT in ~9 seconds.
- Preliminary results show realistic tradeoff on feedstocks costs vs production rates (depending on available time).
Multiple Product Model - Example

Different time horizons tested to measure the tradeoff of feedstock costs versus production rates.
Multiple Product Model - Example

Different time horizons tested to measure the tradeoff of feedstock costs versus production rates.
Multiple Product Model - Example

Different time horizons tested to measure the tradeoff of feedstock costs versus production rates.
Multiple Product Model - Example

Different time horizons tested to measure the tradeoff of feedstock costs versus production rates.

![Diagram showing 20 products and tradeoff between feedstock costs and production rates.]
Multiple Product Model - Example

Different time horizons tested to measure the tradeoff of feedstock costs versus production rates.
Multiple Product Model - Example

Different time horizons tested to measure the **tradeoff** of **feedstock costs** versus **production rates**.
Multiple Product Model - Example

Different time horizons tested to measure the tradeoff of feedstock costs versus production rates.

![Graph showing feedstock costs and production rates over time.](image)
Multiple Product Model - Example

Different time horizons tested to measure the tradeoff of feedstock costs versus production rates.

- 3days

Ref

% of Max Production Rate

0 4 8 12 16 20 24 28 31

0 20 40 60 80 100

0 4 8 12 16 20 24 28 31

0 20 40 60 80 100
Multiple Product Model - Example

Different time horizons tested to measure the \textit{tradeoff} of \textbf{feedstock costs} versus \textbf{production rates}.

- 3 days
- Ref

![Graph showing different production rates over time.](image-url)
Multiple Product Model - Example

Different time horizons tested to measure the **tradeoff** of **feedstock costs** versus **production rates**.

![Graph showing different time horizons tested for feedstock costs versus production rates.](image-url)
Multiple Product Model - Example

Different time horizons tested to measure the tradeoff of feedstock costs versus production rates.

- 3 days
- Ref
- + 3 days

% of Max Production Rate

Idle time
Multiple Product Model - Example

Different time horizons tested to measure the **tradeoff** of **feedstock costs** versus **production rates**.

Propylene Source

- **CG** 37%
- **RG** 63%

Optimal Solution (PROFIT)

- **CG** 23%
 - **RG** 77%
 - **Idle time**
 - 3 days

- **CG** 19%
 - **RG** 81%

- **CG** 31
 - **RG** 34

- **Idle time**
- 3 days

Idle time

- 28
- 31
- 34

- 88.1 MU
- 100.0 MU
- 103.2 MU
Multiple Product Model - Example

Added “slack” product to assess the benefits of extra production when schedule finishes early ➔ gain/loss opportunity
Multiple Product Model - Example

Added “slack” product to assess the benefits of extra production when schedule finishes early ➔ gain/loss opportunity
Multiple Product Model - Example

Added “slack” product to assess the benefits of extra production when schedule finishes early ➔ gain/loss opportunity
Multiple Product Model - Example

Added “slack” product to assess the benefits of extra production when schedule finishes early ➔ gain/loss opportunity

Propylene Source

Optimal Solution (PROFIT)

100.0 MU

109.1 MU
User Interface via Excel Worksheet

User interface for GAMS multiple-product model developed in MS Excel

- Flexibility to easily test different production schedules with alternative parameters.
User Interface via Excel Worksheet

User interface for GAMS multiple-product model developed in MS Excel

- Flexibility to easily test different production schedules with alternative parameters.

<table>
<thead>
<tr>
<th>Order</th>
<th>Product</th>
<th>Order</th>
<th>Product</th>
<th>Start Time</th>
<th>Duration</th>
<th>Production Rate</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>dd-mm-yyyy hh:mm:ss</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>dd-mm-yyyy hh:mm:ss</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>34</td>
<td>34</td>
<td>dd-mm-yyyy hh:mm:ss</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>dd-mm-yyyy hh:mm:ss</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>dd-mm-yyyy hh:mm:ss</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>dd-mm-yyyy hh:mm:ss</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>20</td>
<td>20</td>
<td>dd-mm-yyyy hh:mm:ss</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>dd-mm-yyyy hh:mm:ss</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>14</td>
<td>14</td>
<td>dd-mm-yyyy hh:mm:ss</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>dd-mm-yyyy hh:mm:ss</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>dd-mm-yyyy hh:mm:ss</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>dd-mm-yyyy hh:mm:ss</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>12</td>
<td>12</td>
<td>dd-mm-yyyy hh:mm:ss</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>7</td>
<td>7</td>
<td>dd-mm-yyyy hh:mm:ss</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
<td>#.#.#.#.#.#.#</td>
</tr>
</tbody>
</table>
User Interface via Excel Worksheet

User interface for GAMS multiple-product model developed in MS Excel

- Flexibility to easily test different production schedules with alternative parameters.

Feedstock Optimization Model

<table>
<thead>
<tr>
<th>Order</th>
<th>Product</th>
<th># Cars</th>
<th>Start Time</th>
<th>Duration</th>
<th>Production Rate</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>10</td>
<td>dd-mm-mmm, h:mm</td>
<td></td>
<td>$$\text{lb/hr}$$</td>
<td>$$\text{mm}$$</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td></td>
<td>dd-mm-mmm, h:mm</td>
<td></td>
<td>$$\text{lb/hr}$$</td>
<td>$$\text{mm}$$</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>34</td>
<td>dd-mm-mmm, h:mm</td>
<td></td>
<td>$$\text{lb/hr}$$</td>
<td>$$\text{mm}$$</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>2</td>
<td>dd-mm-mmm, h:mm</td>
<td></td>
<td>$$\text{lb/hr}$$</td>
<td>$$\text{mm}$$</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>8</td>
<td>dd-mm-mmm, h:mm</td>
<td></td>
<td>$$\text{lb/hr}$$</td>
<td>$$\text{mm}$$</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>2</td>
<td>dd-mm-mmm, h:mm</td>
<td></td>
<td>$$\text{lb/hr}$$</td>
<td>$$\text{mm}$$</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>10</td>
<td>dd-mm-mmm, h:mm</td>
<td></td>
<td>$$\text{lb/hr}$$</td>
<td>$$\text{mm}$$</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>2</td>
<td>dd-mm-mmm, h:mm</td>
<td></td>
<td>$$\text{lb/hr}$$</td>
<td>$$\text{mm}$$</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>14</td>
<td>dd-mm-mmm, h:mm</td>
<td></td>
<td>$$\text{lb/hr}$$</td>
<td>$$\text{mm}$$</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>10</td>
<td>dd-mm-mmm, h:mm</td>
<td></td>
<td>$$\text{lb/hr}$$</td>
<td>$$\text{mm}$$</td>
</tr>
<tr>
<td>18</td>
<td>11</td>
<td>4</td>
<td>dd-mm-mmm, h:mm</td>
<td></td>
<td>$$\text{lb/hr}$$</td>
<td>$$\text{mm}$$</td>
</tr>
<tr>
<td>19</td>
<td>12</td>
<td>2</td>
<td>dd-mm-mmm, h:mm</td>
<td></td>
<td>$$\text{lb/hr}$$</td>
<td>$$\text{mm}$$</td>
</tr>
<tr>
<td>20</td>
<td>13</td>
<td>12</td>
<td>dd-mm-mmm, h:mm</td>
<td></td>
<td>$$\text{lb/hr}$$</td>
<td>$$\text{mm}$$</td>
</tr>
<tr>
<td>21</td>
<td>14</td>
<td>7</td>
<td>dd-mm-mmm, h:mm</td>
<td></td>
<td>$$\text{lb/hr}$$</td>
<td>$$\text{mm}$$</td>
</tr>
</tbody>
</table>

Multiple-product Feedstock Model - Detailed Results

Time Horizon = 50 days

<table>
<thead>
<tr>
<th>TIME SLOTS</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
</table>

Production Requirements

<table>
<thead>
<tr>
<th>Product</th>
<th># Cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Family</td>
<td># Cars</td>
</tr>
<tr>
<td># Cars</td>
<td>10</td>
</tr>
</tbody>
</table>

Results Summary

<table>
<thead>
<tr>
<th>Production rate (lb/hr)</th>
<th># Cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (hr)</td>
<td># Cars</td>
</tr>
<tr>
<td>Use of product</td>
<td># Cars</td>
</tr>
</tbody>
</table>

Refinery Grade

<table>
<thead>
<tr>
<th>% Propylene</th>
<th># Cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Isobutane</td>
<td># Cars</td>
</tr>
</tbody>
</table>

Chemical Grade

<table>
<thead>
<tr>
<th>% Propylene</th>
<th># Cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Isobutane</td>
<td># Cars</td>
</tr>
</tbody>
</table>
User Interface via Excel Worksheet

User interface for GAMS multiple-product model developed in MS Excel

- Flexibility to easily test different production schedules with alternative parameters.
Conclusions and Future Work

CONCLUSIONS

- Multiple-product feedstock optimization nonlinear programming model developed. Process models include distillation and polymerization units.
- Proposed method handles gain/loss scenarios and large schedules (through aggregation/disaggregation).
- Distillation model formulated using aggregated group-method based on work of Kamath et al. 2010.
- Deployment of computational tool to assess monthly feedstock purchase decisions.
- Initial tests show large potential for savings in feedstock cost.
Conclusions and Future Work

CONCLUSIONS

• Multiple-product feedstock optimization nonlinear programming model developed. Process models include distillation and polymerization units.

• Proposed method handles gain/loss scenarios and large schedules (through aggregation/disaggregation).

• Distillation model formulated using aggregated group-method based on work of Kamath et al. 2010.

• Deployment of computational tool to assess monthly feedstock purchase decisions.

• Initial tests show large potential for savings in feedstock cost.

FUTURE WORK

• Improvements on distillation model parameters.
C3 Feedstock Optimization for Multiproduct Polypropylene Production

Pablo A. Marchetti, Ignacio E. Grossmann
Department of Chemical Engineering
Carnegie Mellon University

Wiley A. Bucey, Rita A. Majewski
Braskem America

Thanks for your attention!
Questions?