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Introduction
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• A well-functioning supply chain is critical to the overall profitability of a manufacturing enterprise

• Supply chain disruptions could lead to significant economic loss without a timely detection and an 
effective mitigation strategy

Focus of this study

• Detection and identification of abnormalities in supply chain operation using techniques of 
multivariate statistical analysis

GE.com/GettyImages



Supply Chain Monitoring (SCMo) 
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Articles Supply chain data/KPIs Models/methods Journals/conferences

Lau et al. (2002) Delivery time, product quality A fuzzy logic model Logistics Information Management

Bansal et al. (2005) Stock inventory, throughput Causal models Computer Aided Chemical Engineering

Mele et al. (2005) Material flows, orders, inventory levels Multi-scale delay adjusted PCA Computer Aided Chemical Engineering

Fei and Wang (2008) Delivery delay, inventory levels A recurrent neural network
International Symposium on Computer Science
and Computational Technology

Chae (2009) KPIs for plan, source, make, and delivery Supply chain operations reference (SCOR) model Supply Chain Management

Zhou and Rong (2010) Customer needs Integration definition for function modelling (IDEF0)
International Conference on Logistics Systems
and Intelligent Management

Goh et al. (2013)
Logistics, inventory, order and manufacturing
information, risk-related information

A supply chain visualization platform
IEEE International Conference on Automation
Science and Engineering

Irizarry et al. (2013) Status of materials A supply chain visualization system Automation in Construction

Fernández et al. (2015)
Orders and resources associated with a
schedule

A multi-agent monitoring system Computers in Industry

McKinney et al. (2015) Containers Container monitoring devices Transportation Research Record

Blos et al. (2018) Historical database of supply chain disruptions Petri net and agent-based model International Journal of Production Research

• Research on SCMo involves contributions from a variety of domains.

• Use of multivariate statistical methods in SCMo is scant.



Principal Component Analysis (PCA)
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• PCA is designed for extracting uncorrelated components from correlated data (Wold et al., 1987)

• Applications in the process system engineering community

• Extensions of PCA include:

• PCA-based statistical process modeling and monitoring

• dynamic PCA (Ku et al., 1995)
• kernel/nonlinear PCA (Lee et al., 2004) 
• dynamic inner PCA (Dong and Qin, 2018)

(Kresta et al., 1991, Kourti and MacGregor 1995)

• statistical process monitoring: MacGregor et al. (2005), Qin and Chiang (2019)
• dimensionality reduction: Ning and You (2018), Hassanpour et al. (2022)
• optimization in the latent variable space: Flores-Cerrillo and MacGregor (2004), Golshan et al. (2009)

• PCA first formulated in statistics by Pearson (1901), and NIPALS algorithm outlined in 
Fisher and Mackenzie (1923)

Development and Applications

Characteristic: dimensionality reduction



Principal Component Analysis
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www.davidzeleny.net/anadat-r/doku.php/en:pca

Formulation



PCA-based process monitoring

Principal Component Analysis
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➢ Monitoring statistics & confidence limits

➢ Fault detection

• PCS: Hotelling’s T2

• RS: Squared prediction error (SPE)

• Project the real-time data into PCS and RS:

• Calculate monitoring statistics.

• Raise an alarm if:

• Example of monitoring chart

Kevin Dunn. Process Improvement Using Data. learnche.org/pid/

Sample 𝑥𝑖 can be projected to the principal component
subspace (PCS) and the residual subspace (RS).



PCA-based process monitoring

Principal Component Analysis
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➢ Fault diagnosis – identify fault-related variables

➢ Dynamic PCA (DPCA)

• Takes into account autocorrelation

• PCA on augmented data

Example: contribution to SPE

Variables



Applications of PCA in Supply Chain Analytics

10

Articles Applications of PCA

Mele et al. (2005)
Demonstrate the application of PCA techniques for detection of manufacturing and transportation delays in a
simulated supply chain system. Their study includes a wavelet based multiscale PCA technique and a Genetic
Algorithm based search scheme to account for time delays.

Lei and Moon (2015)
Use PCA to help determine market segments for new products and develop a decision support system for market-
driven product positioning and design.

How and Lam (2018)
Use PCA to reduce the redundancies of performance indicators, thus aiding the multiobjective optimization of a
supply chain.

Ning and You (2018)

Gao et al. (2019)

Data-driven supply chain optimization: PCA is applied to help characterize uncertain parameters in a supply chain
by reducing the dimensionality of the correlated uncertainty data.

Pozo et al. (2021)
PCA is employed to reduce the computational complexity of a multiobjective optimization problem formulated for
supply chain design. Redundant metrics are identified and omitted while retaining the main features of the problem.

• Application of PCA to SCMo is scant.



Data-driven SCMo Using PCA*

11* Wang, J., Swartz C.L.E., Corbett, B., and Huang, K. Ind. Eng. Chem. Res., 59(27):12487-12503, 2020.

1. Collect NOC data of supply chain (inventory levels, products in transit, etc.)

2. Preprocessing: Augment data for DPCS; normalize data to have zero mean and unit variance.

3. Perform PCA/DPCA; obtain loadings and scores

4. Calculate the monitoring statistics (T2 and SPE) of the NOC data

5. Determine the confidence limits of T2 and SPE

1. Normalize new data point with mean and standard deviation of 
each variable from training step.

2. Project new data into PCS and RS to obtain scores and residuals.

3. Calculate the T2 and SPE of new data

4. Check whether the T2 and SPE are both within their confidence 
limits. If abnormal operation detected, use contribution plots to 
identify fault-related variables. 

Training step

Monitoring step

*Wang, J., Swartz C.L.E., Corbett, B., and Huang, K. Ind. Eng. Chem. Res., 59(27):12487-12503, 2020.



Case study I: A multi-echelon supply chain
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Fault scenarios:

• Raw materials M1 and M2 to produce product A:  0.5M1 + M2 → A

• Inventory policy: (s, S), s – reorder point, S – target inventory

• Demand: multivariate Gaussian distribution

• Data for 21 variables: retailer and warehouse orders (4), inventory levels (9), products in transit or processing (8)

• Based on NOC data, 10 PCs explain 85% of variance for PCA; 18 PCs explain 82% of variance for DPCA with 2 lags.

1

2

3

1. Raw material shortage - Supplier 1

2. Reduced yield

3. Transportation delay

Wang, J., Swartz C.L.E., Corbett, B., and Huang, K. Ind. Eng. Chem. Res., 59(27):12487-12503, 2020.



Supply chain simulation model

Supply Chain Simulation
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• Agent-based modeling

• Simulation starts from the most downstream and proceeds to the 
most upstream echelon by echelon

• Accommodates different inventory policies

• User-specified transportation times

• Developed in Python

▪ Sequence of actions of a Retailer:

• Places an order to Warehouse

• Receives past orders

• Satisfies backorders and demand of Customer

• Updates inventory profiles

▪ Sequence of actions of a Warehouse:

• Places an order to Factory

• Receives past orders

• Satisfies backorders and orders of Retailers

• Updates inventory profiles

Simulation procedure

▪ Generate random demand samples

▪ ……



Case study I: A multi-echelon supply chain
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Fault detection: DPCA monitoring charts

Fault diagnosis:

Related to Supplier 1  

The abnormality is detected soon after the stockout occurs 
at the supplier, before it affects downstream agents.

SPE contributions at the beginning of the stockout1

Fault: Raw material shortage 

Wang, J., Swartz C.L.E., Corbett, B., and Huang, K. Ind. Eng. Chem. Res., 59(27):12487-12503, 2020.



Case study II: A packaged liquefied gas supply chain *

15* Misra, S., Kapadi, M., Gudi, R.D., Saxena, D., Ind. Eng. Chem. Res., 58, 7579-7592, 2019.

• Flow of filled stock keeping units (SKUs) from upstream to downstream 

• Flow of empty SKUs from downstream to upstream

• Demand: multivariate Gaussian, seasonality

• Data for 60 variables: Demand of products A and B (10), inventory levels (24), SKUs in transit and at plants (26)

• NOC data: DPCA using 2 lags →180 variables. 50 PCs explain 95% of variance.

Fault scenarios:

1. Reduced yield – Plant 1

2. Transportation delay

1

2

Wang, J., Swartz C.L.E., Corbett, B., and Huang, K. Ind. Eng. Chem. Res., 59(27):12487-12503, 2020.



Case study II: A packaged liquefied gas supply chain *
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Fault diagnosis: SPE contributions

Abnormality of Customer 2 detected. 

Inventories and SKUs in transit 

related to Customer 2, product B  

• Seasonal demands

• Transportation delay of product B to Customer 2

Fault scenario 2

Fault detection: DPCA monitoring charts



Canonical Variate Analysis (CVA)
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• Based on reduced dimension dynamic (state space) model.

• Considered to be more suitable for dynamic systems.

• Literature studies indicate superior performance to PCA for dynamic systems, under various 
metrics and applications.

• Motivated investigation of CVA for supply chain monitoring.

• Useful literature sources:

• Negiz, A, Cinar, A (1997). AIChE J., 43(8), 2002-2020.

• Russell, E, Chiang, LH, Braatz, RD (2000). Data-driven Methods for Fault Detection 
and Diagnosis in Chemical Processes, Springer-Verlag, London.

• Jiang, B, Huang, D, Zhu, X, Yang, F, Braatz, RD (2015). J. Process Control, 26, 17-
25.



Canonical Variate Analysis
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• Consider a dynamic system in state-space form

• Construct past & future vectors:

• Find 𝛼, 𝛽 to maximize the correlation:
• Solution via

• Issue: invertible matrices



Canonical Variate Analysis
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To address singular matrices:

• Problem solved by a penalized matrix decomposition

• Sparse CVA (SCVA) (Witten at al., 2009; Lu et al., 2018)

• Canonical states: 

• Result: Projection matrix 𝐽𝑑

CVA-based fault detection & diagnosis

Monitoring statistics:

• Canonical state space: 

• Residual space: 

Confidence limit determined by its 
corresponding percentile of training data.



Canonical Variate Analysis
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Variable contributions

• Contribution of input to the residual space

• Combined contribution

• Contribution of input to the canonical state space



Data-driven SCMo Using CVA
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A general supply chain system modeled by using the mass balances:



Data-driven SCMo Using CVA
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Variable lifting:

Then,



Data-driven SCMo Using CVA

23

Supply chain state space model takes the form:



Case study I: The beer distribution game
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• (S-1, S)/1-1 policy. S – target inventory.

• (R, S) policy. R – review period, S – target inventory.

Demand pattern

• Normal distribution

• Seasonal autoregressive integrated moving average (SARIMA)

Supply chain variables (17)

• Inputs (9): quantities of production, shipment, order, sale, demand 

• Outputs (8): stock on hand, backlog

1. Dimensionality reduction

2. False alarm rate (FAR)

3. Missed detection rate (MDR)

4. Detection delay

Performance metrics: 

Inventory policies

Fault scenarios:

1. Transportation delay: Wholesaler, Retailer

2. Transportation delay: Distributor, Wholesaler

3. Transportation delay: Factory, Distributor

4. Reduced yield: Factory

5. Customer demand: an increase

6. 1 & 2; 3 & 4

Wang, J., Swartz C.L.E., Huang, K. (2023). Comp. Chem. Eng., in press.



Case study I: The beer distribution game
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SCVA hyperparameter tuning

• State order d = 1

• sparsity parameter c = 0.8

• Demand ~ normal distribution

• 1-1 inventory policy

Selected hyperparameters:

Metric: average MSE

d = state order; c1, c2 = sparsity parameters 

where 𝑐1 = 𝑐 𝑛𝑝, 𝑐2 = 𝑐 𝑛𝑓

• CVA model is fitted to different subsets 
constructed by partitioning the training set.

• Average mean squared error (MSE) is calculated

• For each candidate hyperparameter pair (d, c):

• Training set comprises SC data collected over 1000 
time periods

• Time lags (l=h=2) determined from autocorrelation plot

recalling that 

34 SC variables reduced to 1 canonical state

Wang, J., Swartz C.L.E., Huang, K. (2023). Comp. Chem. Eng., in press.



Case study I: The beer distribution game
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• SCVA achieves comparable performance to DPCA in terms of FAR 

in a lower dimensional latent space.

• The level of FAR can be case-dependent.

ratio of false alarms relative to the total samples.

DPCA hyperparameter tuning

Metrics:

• R2: explained variance of training set

• Q2: explained variance of validation set

Selected number of PCs: 2

Table: average false alarm rate

FAR – type I error rate, false positive rate:

Wang, J., Swartz C.L.E., Huang, K. (2023). Comp. Chem. Eng., in press.



Case study I: The beer distribution game
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• Retailer experiences a longer transportation

delay (4 periods) for its orders. The normal

delay is 2 periods.

Fault scenario:

• Transportation delay: Wholesaler, Retailer

Related to Retailer’s inventory  

Observations

• Q-statistic exceeds its 99% limit, indicating 

suspected presence of fault.

• Largest contributions associated with retailer 

inventory and backorders

Wang, J., Swartz C.L.E., Huang, K. (2023). Comp. Chem. Eng., in press.



Case study I: The beer distribution game
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• Q in SCVA and SPE in DPCA are more reliable for detecting faults than Td
2 and T2. 

• Consistent with Russel et al. (2000) in application to Tennessee Eastman problem

• SCVA achieves comparable performance to DPCA in terms of missed detection rate.

Table: missed detection rate

Missed detection rate (MDR)

• Type II error rate, false negative rate

• The ratio of undetected faulty samples relative to the total number of faulty samples under a specific fault.



Case study II: A packaged liquefied gas supply chain *

29* Misra, S., Kapadi, M., Gudi, R.D., Saxena, D., Ind. Eng. Chem. Res., 58, 7579-7592, 2019.

Fault scenarios:

1. Transportation delay: Warehouse, Customer

2. Transportation delay: Plant, Warehouse

3. Plant refilling delay

4. Change of Customer demand

5. 1&2; 1&4; 2&3

Demand patterns:

• Cross-correlation

• Autocorrelation

Multivariate Gaussian distribution

Vector autoregressive moving average 
(VARMA):

Supply chain variables (58)

• Inputs (34): shipment quantities

• Outputs (24): inventories

Wang, J., Swartz C.L.E., Corbett, B., and Huang, K. Ind. Eng. Chem. Res., 59(27):12487-12503, 2020.



Case study II: A packaged liquefied gas supply chain
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• Demand ~ multivariate Gaussian distribution

• 58 variables x lag order 8

• SCVA: 20 canonical states for a low MSE, with 
sparsity c ∈ [0.7, 1]

• DPCA: 51PCs, with R2 ≈ 76%, Q2 ≈ 70%

SCVA uses significantly fewer latent variables; 464 variables reduced to 20 canonical states.

Hyperparameter tuning

• Lag order via autocorrelation plot

• 2000 training samples



Case study II: A packaged liquefied gas supply chain
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• More canonical states and latent variables needed under autocorrelated demand

• SCVA achieves comparable performance to DPCA in terms of false alarm rate.

Table: average false alarm rate



Case study II: A packaged liquefied gas supply chain
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• Both SCMo models rely on the statistic in the residual space.

• SCVA achieves comparable performance to DPCA in terms of missed detection rate.

Table: missed detection rate



Fault Impact Prediction
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✓ fault detection

❑ fault impact prediction

✓ fault diagnosis/identification

• Proposed CVA-based method of predicting the impact of a fault, i.e., identifying potentially impacted variables.

Current literature

• Studies on CVA-based monitoring are focused on detecting and diagnosing a fault in the observation p(t). 

• The ability of CVA in modeling the relationship between p(t) and f(t) has not been fully explored and utilized. 



Fault Impact Prediction
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The optimal estimate of the future vector based on CVA (Larimore, 1990; Lu et al, 2018):

Recall:



Fault Impact Prediction

35

1. Estimate the fault impact matrix from the NOC training data:

2. When a fault is detected, calculate and normalize the
combined contribution vector:

3. Calculate the expected relative variation of output variables:

A large component of the vector FP(t) indicates that the
corresponding variable is likely to be impacted by the fault.

Components of the vector can be interpreted as the probability
of the corresponding variables being fault-related.

fault impact matrix 

contribution vector

expected relative variation 

Output variables

O
ut

pu
t

va
ri

ab
le

s

Variables

Variables



Fault Impact Prediction
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Fault impact indicator matrix from NOC data
• Inventory policy: 1-1 policy

• Demand ~ normal distribution

• Transportation delays: 4 time periods

• 17 supply chain variables:

Inputs (9): quantities of production, shipment, order, sale, demand

Outputs (8): stock on hand, backlog

SCVA model: 

• Lag orders l = h = 4

• State order d = 3, sparsity c = 0.8

• Production of factory shuts down for 5 time periods

• Impact - stockout: factory → distributor → wholesaler → retailer

Fault scenario:

Wang, J., Swartz C.L.E., Huang, K. (2023). Comp. Chem. Eng., in press.



Fault Impact Prediction
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Fault detection & diagnosis

Fault impact prediction vector Contribution vector

1
2

3

backlogs



• Multivariate statistical methods are shown to be promising for supply chain monitoring.

• Abnormal behavior of the supply chain, e.g., transportation delay, low production rate, and supply

shortage, can be successfully detected by PCA and CVA.

• Contribution plots can help interpret the abnormality and identify the fault-related variables.

• CVA can achieve comparable performance in a lower dimensional latent space.

• The proposed fault impact prediction method is effective.

Conclusions

38

• Application to real-world supply chain systems.

• Identify limitations of methodology, and refine.

Future work
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