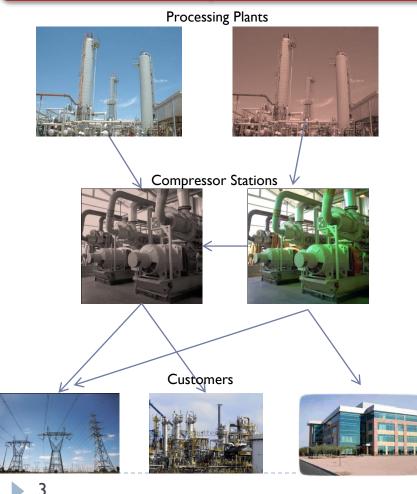
Dynamic Optimization in Gas Pipeline Networks


EWO MEETING, Spring 2012

Ajit Gopalakrishnan L. T. Biegler

- Collaboration with Cognizant (Invensys).
- Dynamic Optimization of Gas Pipeline Networks
 - First principles model developed in Baumrucker & Biegler (2010), moved into a GUI-based ROMeo platform.
 - ROMeo: Rigorous On-line Modeling and Equation-based Optimization
 - Model will provide a case study for ROMeo's dynamic optimization capabilities using the OPERA SQP solver.
 - Generate scenarios and verify results.

Gas Transmission Pipeline Networks

Interconnected network of suppliers, consumers and compressor stations

- Suppliers: Continuous flow of gas into network.
- Customers: Chemical industries, Power plants, Residential/commercial heating:
 Flow demands must be satisfied at a contract pressure.
- Compressor Stations: Compression of gas to compensate for frictional loss.
- Optimization Scope Decide on optimal operating points by minimizing the operating cost of compressors s.t.,
 - satisfying time varying gas demands,
 - contract pressures, and
 - physical constraints.

Pipeline modeling

 $\frac{\partial p}{\partial z} + \frac{f}{2} \frac{RT}{M_{\mu} DA^2} \frac{q |q|}{p} = 0$

 $\frac{\partial q}{\partial z} + \frac{\partial p}{\partial t} \frac{M_w A}{ZRT} = 0$

 $A\int_{0}^{L} p(z)dz = Z\frac{m}{M_{w}}RT$

Pipeline Arcs: PDE's to describe pressure driven flow in a pipe: p(z,t) and q(z,t)

Momentum Balance:

Material Balance:

Network Inventory:

 $s \in S$ $i \in I$ $d \in D$ $d \in D$

Node equations

- Flow balance: no accumulation at nodes.
- Pressure balance: pressure at a node is equal to the pressure either into or out of the connected arc.

• **Compressor equation:**
$$Power_{s,t} = q_{s,t}^{Supply} \frac{C_p T_{ref}}{\eta} \left[\left(\frac{P_{s,t}}{P_{inlet}} \right)^{(\gamma-1)/\gamma} - 1 \right] \quad \forall s \in S, t \in T$$

- Colebrook-White turbulent friction factor
- Flow reversals through smoothing

	SET DEFINITIONS	
7	Ι	Arcs (pipe segments)
	J	Nodes (intersection)
	$K = \{in, out\}$	End-points of the pipe
	S	Suppliers in network
	D	Demands in network
	$T = \{0,, t_f\}$	Time points

⁴ B.T. Baumrucker and L.T. Biegler, MPEC strategies for cost optimization of pipeline operations, Computers & Chemical Engineering, 34 (2010), 900-913.

Dynamic Optimization Formulation

- Formulation (NLP):
 - min Compression energy
 - *s.t.* Discretized dynamic pipeline model

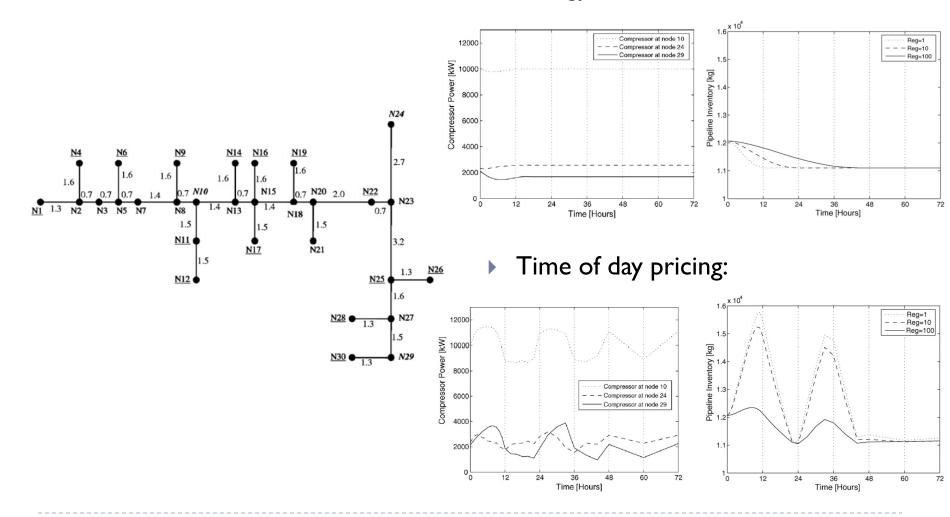
Physical Constraints

Terminal Constraint

• **Objective function** (Energy minimization):

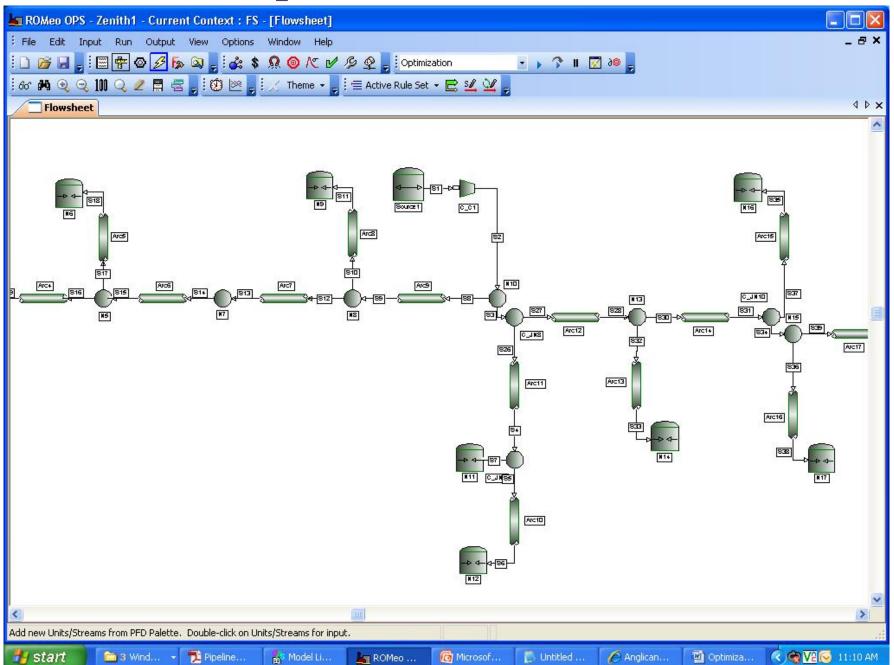
$$J(t_0) = \underbrace{\sum_{s \in S} \int_{t=t_0}^{t=t_0+T_P} Power_{s,t} dt}_{\text{Total Energy}} + \underbrace{P\sum_{s \in S} \sum_{t \in T \setminus \{t_0\}} (Power_{s,t} - Power_{s,t-1})^2}_{\text{Smoothing term}}$$

Term	Meaning
States	Pipeline Inventory
Inputs (MV)	Supplier flow rates
Parameters	Forecast of future demand


Constraints:

- Delivery points: Contract pressures should be satisfied.
- Supplier points: Compressor limits on minimum & maximum discharge, pressures and work.
- Linepack/Inventory targets: Restoring sustainable gas pipeline inventory and pressure.

$$\sum_{i} mass_{i,t_f} \geq \sum_{i} mass_{i,0}$$


Case Studies on the Praxair Network

• Energy minimization:

6 Zhu, G.-Y., Henson, M. A., & Megan, L. (2001). Dynamic modeling and linear model predictive control of gas pipeline networks. Journal of Process Control, 11, 129–148.

Flowsheet representation in ROMeo

- Pipeline model built in ROMeo.
- Allows user to add Pipe Segments, Sinks, Sources, Compressors and Nodes.
- First principles models from Baumrucker & Biegler, embedded into ROMeo.
- Results validated against PIPEPHASE: steady-state pipeline simulator (Invensys)
- Dynamic Optimization case studies compare well against results published in Baumrucker & Biegler.
- Future interest in dynamic optimization: Water Pipeline Networks, PSA.

⁸ B.T. Baumrucker and L.T. Biegler, MPEC strategies for cost optimization of pipeline operations, Computers & Chemical Engineering, 34 (2010), 900-913.