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1. Data Analytics and Optimization

Smart industry

Taking the cyber-physical systems realized by the Internet of Things as carrier, sensors are used to
collect on-site perceived data through the network. According to the obtained data, data analytics
technology is used to accurately understand, measure, diagnose and forecast the production,
logistics and energy flow processes. On this basis, optimal decisions are made on production
planning, scheduling, operation and control to realize the intelligent ability of factories.
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1. Data Analytics and Optimization
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1. Data Analytics and Optimization — Steel Production Process

Features: continuous and discrete production, huge devices, high-temperature operations, massive
consumption of energy and resource
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1. Data Analytics and Optimization

> New Characteristics

® Complex physical and chemical processes
® Large variety and low volume products

® Complicated logistics structure

Complicated Large Variety and Huge Chemical Complicated
Production Process Low Volume Equipment Logistics Structure
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1. Data Analytics and Optimization — DAO based System Modeling

% Perceptual cognition is the basis of rational cognition; and rational cognition is the sublimation of
perceptual cognition, which are unified in practice.
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1. Data Analytics and Optimization — DAO based System Modeling

Data Analytics and Optimization (DAO)

Deduce Induce

Music expresses something that

Analytics) cannot be described in words

neither can be silenced.

Brain-inspired Intelligence — Victor Hugo

L. Tang, Y. Meng. Data analytics and optimization for smart industry. Frontiers of Engineering Management, 2021, 8(2): 157-171.

(Best Paper Award for 2014~2023)



1. Data Analytics and Optimization — DAO based System Modeling

% Mathematical modeling is used to formulate the identifiable and quantifiable parts of the
production, logistics and energy optimization problems. Meanwhile, data analytics supplements
the mathematical model for constructing the parts that are hardly to model and forming the
parameters of the model.

DAO based System Modeling

( ) 4
Optimization (OR) Data Analytics (Al)
Max Z = FX - C. X C,.Y, )
" ZZ o ZZ( o +Z wlh) : Industrial Data
s.1.
forieN
; X, < 1 orie OR
Optimization
th_X” <H forjeP ( P )
ie()/
Y =1 for jeP
2T AI
Y;kj < Yw forjeP, keO;, ie O;N R, An(g;‘tt::s)
X = Z Y, forjeP, ic0);
! ke, N, v
X, €l0.1} forjep, ie0), Complicated Model Technological
. . i dures
Y, 0.1} for jeP, keO, ic O; M Ry \ constraints  parameters  proce )

L. Tang, Y. Meng. Data analytics and optimization for smart industry. Frontiers of Engineering Management, 2021, 8(2): 157-171.

(Best Paper Award for 2014~2023)



1. Data Analytics and Optimization — DAO based System Modeling

Production: Set-packing Modeling Logistics: Space-time Network Flow Modeling

Engineering perspective
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L. Tang, G. Wang, Z. Chen. Integrated charge batching and casting width selection at Baosteel. Operations Research, 2014, 62(4): 772-787.

D. Sun, L. Tang, R. Baldacci, Z. Chen. A decomposition method for the group-based quay crane scheduling problem. INFORMS Journal on Computing, 2024, 36(2): 305-704.



1. Data Analytics and Optimization — DAO based System Modeling

Energy: Continuous-time Modeling Information: Generalized Disjunctive Programming
Engineering perspective minz = f(x) + Z Ck
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Q. Guo, L. Tang, 1. Liu, S. Zhao. Continuous-time formulation ... in aluminium industry. International Journal of Production Research, 2021, 59(10): 3169-3184.

I.E. Grossmann, F. Trespalacios. Systematic modeling of discrete-continuous optimization models through generalized disjunctive programming. AICAE, 2013, 59(9): 3276 - 3295



1. Data Analytics and Optimization — DAO based Solution

DAO based optimization weroving accurae, DAO based analytics
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L. Tang, Y. Meng. Data analytics and optimization for smart industry. Frontiers of Engineering Management, 2021, 8(2): 157-171.

(Best Paper Award for 2014~2023)



1. Data Analytics and Optimization — DAO based Solution
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1. Data Analytics and Optimization — DAO based Solution

Integer Optimization Methods and Improvement
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1. Data Analytics and Optimization — DAO based Solution

Integer Optimization — Branch & Price

% A Branch & Price_ approach is proposed Branch & Price
based on set packing model. ST _

% Discover the trapezoidal feature of the || &7 Gl o —
cost structure and construct a new low- :&g R L e
dimensional  dynamic  programming e e |
algorithm, which overcomes the high- et e Ceawsae | 21
dimensional feature of the conventional I | s, st A
dynamic programming algorithm. | el | 2

% Propose a multi-layer branching strategy B | B g e | veen]  F
with sub-problem structure. R R T — §|

< For the first time, it realizes the optimal | T .

solving of the same kind of problem.

L. Tang, G. Wang, Z. Chen. Integrated charge batching and casting width selection at Baosteel. Operations Research, 2014, 62(4): 772-787.



1. Data Analytics and Optimization — DAO based Solution

Integer Optimization — Lagrangian Relaxation

% The coupling/complex constraint is relaxed into the objective function by Lagrangian multiplier, thus
decouple and decompose the full problem into several independent sub-problems.
> Decomposition: batch decoupling strategy, stage-based decomposition
> Dual problem solution: hybrid backward and forward dynamic programming

Zsc =Hﬁﬂzt‘ﬁj 2 (A) = mmz.c X, +Z,2 (l—zuux;)
Multiplier relaxation i1
s.1 Za“xj =1, i=12,---,m, .1 X, E{ﬂsl}:-} =12,---,n,
A =0
x; {01}, j=12,---.,n
" Lower bound decomposition
TiperlA)=min )y d x. + > A
Zixse(A) = Zd +Zﬂ solve subproblems uasc () ; i ;, i
Xf_{l i d,<0 optimally st x, e{01),j=12n,
|0, otherwise 1>0.

L. Tang, H. Xuan, J. Liu. A new Lagrangian relaxation algorithm for hybrid flowshop scheduling to minimize total weighted completion time. Computers

& Operations Research, 2006, 33(11): 3344-3359. 17



1. Data Analytics and Optimization — DAO based Solution

Benders Decomposition Algorithm Structure

Various Valid Inequalities
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L. Tang, D. Sun and J. Liu. Integrated storage space allocation and ship scheduling problem in bulk cargo terminals. ITISE Transactions, 2016, 48(5):

428-439. (Featured Article) 18



1. Data Analytics and Optimization — DAO based Solution

Outer Approximation(OA) Algorithm Structure
: Multi-generation Cuts :
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L. Su, L. Tang and I.E. Grossmann. Computational strategies for improved MINLP algorithms. Computers & Chemical Engineering, 2015, 75: 40-48.

L. Su, L. Tang, D. E. Bernal, I. E. Grossmann. Improved quadratic cuts for convex mixed-integer nonlinear programs. Computers & Chemical Engineering, 2018, 109: 77-95.



1. Data Analytics and Optimization — DAO based Solution

Integer Optimization — Branch & Cut

% Branch & Cut is developed. o
- - - - Exit_Colf—=======--+ . 4(1)‘ I .8@{ 128
% The model tightening technique s i/” e
proposed based on the reformulation with | T AR X
. . G R i
compact lower bound. e 1
% A series of valid inequalities (e.g., subtour [ meei w .
elimination) is used to accelerate the CPLEX Bac
convergence of the algorithm. S c L s Y a e
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+» Variable reduction 2 B 103225 o 82  73.586 10
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% The algorithm can solve the real scale
. . . 18 432 85.099 0 432  73.554 4
problems to optimal, and is superior to 19 460 248010 0 460 8L 26
. 20 3 3.978 0 3 3.728 2
CPLEX in performance. —— D

X. Cheng, L. Tang and P.M. Pardalos. A Branch-and-Cut algorithm for factory crane scheduling problem. Journal of Global Optimization, 2015, 63(4):

729-755.



1. Data Analytics and Optimization — DAO based Solution

Differential Evolution with an Individual-dependent Mechanism Improved Differential Evolution Algorithm for Dynamic Scheduling
| Individual-dependent Parameters Setting | | Incremental Mechanism for Initial Population |
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L. Tang, Y. Dong and J.Y. Liu. Differential evolution with an individual-dependent mechanism. JEEE Transactions on L. Tang, Y. Zhao and J.Y. Liu. An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-

continuous casting production. IEEE Transactions on Evolutionary Computation, 2014, 18(2): 209-225. ( IF: 14.3)

Evolutionary Computation, 2015, 19(4): 560-574 . ( ESI Highly Cited Paper, IF: 14.3)

MOEA/D with Neighborhood-based Knowledge Transfer for Multiobjective Multitask
Optimization (MTEA/D-DN)
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L. Tang and X. Wang. A hybrid multiobjective evolutionary algorithm for multiobjective optimization problems. JEEE
Transactions on Evolutionary Computation, 2013, 17(1): 20-45. ( IF: 14.3)

X. Wang, Z. Dong, L. Tang, and Q. Zhang. Multiobjective multitask optimization - neighborhood as a bridge for knowledge
transfer. TEEE Transactions on Evolutionary Computation, 2023, 27(1): 155-169. (ESI Highly Cited Paper, IF: 14.3)




1. Data Analytics and Optimization — DAO based Solution

K-medoids Memetic Permutation Group Algorithm Performance
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_________________________________ The KMPG outperforms the state-of-the-art methods.

L. Tang, Z. Li and J. Hao. Solving the single row facility layout problem by k-medoids memetic permutation group. TEEE Transactions on

Evolutionary Computation, 2023, 27(2): 251-265. ( IF: 14.3)
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2. MCIS-E Production-Logistics-Energy Optimization with Feedback

China is the Largest Steel Producer
% China has been the largest steel producer in the world for the last twenty consecutive years.

% In 2022, China's steel output has reached about 1.013 billion tons, accounting for about 53.93%
of the world's steel output.

% Steel industry has been one of the pillar industries in China’s national economy.

World steel production China's industrial output ratio

Steel 11.7%
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2. MCIS-E Production-Logistics-Energy Optimization with Feedback
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2. MCIS-E Production-Logistics-Energy Optimization with Feedback

Triple transfer and one feedback (MCIS-E)

Y (ilei sy ——> Mass transfer

Manufacturing-
Logistics —> Momentum transfer Circulation Industrial System
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E (ECO-System) = Production + Logistics + Energy + Information



2. MCIS-E Production-Logistics-Energy Optimization with Feedback
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2. MCIS-E Production-Logistics-Energy Optimization with Feedback

Steel Production
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hot rolling mill
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M e . continuous annealing coil yard electro-galvanization
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2. MCIS-E Production-Logistics-Energy Optimization with Feedback

Production Scheduling

Charge Batching Cast Batching
| " % % <«— Ladle
| = | Cas“. <— Tundish
Order 1 l
Il
— = =) Ch N
' z o xﬁ%ﬁf—‘f{-——- —
Order 2 Charge Steelmaking Continuous casting

Convertor CF-1
Convertor CF-2
Refining RF-1
Refining RF-2

Caster CC-1
Caster CC-2

Data Analytics and Optimization for Smart Industry



2. MCIS-E Production-Logistics-Energy Optimization with Feedback

Group all the slabs of
/ (G different customer orders
/ into batches

L)

Open-order Part

Open-order Slabs

— — p-median clustering
E— \— with capacity and additional

*

Customer-order Part 4

High variety : :
Low volume Charge Customer-order Slabs technical constraints
Chargel Charge4 Ch 7 . . .
_A —A _‘de ® Minimize assignment cost
- “ Charge2 Charge3 " “.4 Charge5 157 Charge6 ! “ Cha;ge8 Charge9 ..................... _ . M|n|m|ze open-order 5|ab5
............. ) (‘_L‘_/\ ‘r‘ v o “‘ % —41\\ . Minimize unfulfi”ed Cost Of Order
=R N P Lol Lo
...... Wa|t|ng \\‘x“\\‘ Waltlng \.\‘\\‘\‘ Waltlng \‘\ L‘\ \“ . Lagrangian relaxation
time \ : . time ‘ ‘ time . . =

® Column generation

Cast 1 Cast 2 Cast 3 t

L. Tang, G. Wang, J. Liu, J. Liu. A combination of Lagrangian relaxation and column generation for order batching in steelmaking and

continuous-casting production. Naval Research Logistics, 2011, 58(4): 370-388.



2. MCIS-E Production-Logistics-Energy Optimization with Feedback

%, .%, Ladle Decisions

lcast! < Tundish « Batch and sequence charges to form casts for
T the given tundishes

 Select a casting width for each charge in a cast

o STV

Ceeecce

Steelmaking Continuous casting Objectives

« Maximize tundish utilization

« Minimize total grade switch and width switch cost

C= Charge

Width CAST 1 CAST 2 CAST 3 Constraints

« Grade switch constraint
« Width switch constraint
>

« Lifespan of tundish

serial-batch 1 serial-batch 2 serial-batch 3 Time

L. Tang, G. Wang, Z. Chen. Integrated charge batching and casting width selection at Baosteel. Operations Research, 2014, 62(4): 772-787. 33



2. MCIS-E Production-Logistics-Energy Optimization with Feedback

Characteristics of Semi-continuous < A new kind of batch scheduling
Batching Scheduling _ _
% We analyze the semi-continuous batch
S cttes] Befiifie __The New Semi scheduling problem, and present the
) . continuous Batching i i
Machine Scheduling Machine Scheduling optimal algorithm.

y
Begi nter and leave th Preheating zone > Heating zone Sle Soaking zone
process Handle achine one by o /r /r /r
< several jobs | | p, 2 1 el e |
simultaneously
spective start ti
Input Output

Respective
s completion time Measure

Traditional batching machines are mainly divided into three types: The heating process of tube-billets in
(1) burn-in (2) fixed batch (3) serial batching heating furnace

L. Tang, Y. Zhao. Scheduling a single semi-continuous batching machine. Omega, 2008, 36(6):992-1004.



2. MCIS-E Production-Logistics-Energy Optimization with Feedback

Sequence of adjacent jobs Minimize the total

to be processed

Objective

changeover costs

N+M N+M

Slab Slab width

Warm up material section

|A
<

Minimize Z Z Cij Xij Staple material section
i=1 j=1
. N+M
Subjectto »" X, =1, je{l, 2,...,N+M } J
i=1
N+M
> X, =1, ie{l,2,..,N+M} S
j=1
D> X <SI-1 Sc{l,..,N+M}, 2<|S|<N+M -2 Structure and components of a turn
ieS jeS\{i}
A
The The
W|dth -------- ﬁrst |ast --------
slab slab
A 4
The first turn Turns within a shift

L. Tang, J. Liu, A. Rong, Z. Yang. A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel

Complex. European Journal of Operational Research, 2000, 124(2): 267-282.




2. MCIS-E Production-Logistics-Energy Optimization with Feedback

A2

Open-order Part

e > ’ Customer
Customer-order Part *\T/-: |:> /ﬂ 5 ’ Orders

High variety Customer-order Slabs
Low volume Charge

— g o

Open-order Slabs

Allocate the
/- / / |:> Open-order Slabs to

/ / , / Unfulfilled Orders

Open-order Slabs Order 1 Order 2 Problem 1

Data Analytics and Optimization for Smart Industry



2. MCIS-E Production-Logistics-Energy Optimization with Feedback

Maximize the Minimize the Equipment Matching
Reward Mismatching Cost Constraints Constraints
=1 =1 ——]
i m i m i -
y — N — , -
) 5 5 — —
S
oo 3" 3 = e
Form batches for each Select a median coil for each
empty furnace batch

L. Tang, Y. Meng, Z. Chen, J. Liu. Coil batching to improve productivity and energy utilization in steel production. Manufacturing &

Service Operations Management, 2016, 18(2): 262-279.



2. MCIS-E Production-Logistics-Energy Optimization with Feedback

Logistics in Steel Plant
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2. MCIS-E Production-Logistics-Energy Optimization with Feedback

Logistics Scheduling

T T — Crane scheduling problem

Determines the transportation sequence for all demanded
coils and shuffled position for each blocking coil.

Loading/ Tank1 Tank2 Tank3 Tank4 Tank5 Tank6 Tank7 Tank$8 DECISIOI"I ObJECtIVG
Unloading

Retrieval sequence of the Minimize the time by
target coils and shuffled which the retrieval of all
positions for blocking coils target coils is completed
For general case For special cases
Heuristic algorithm & Polynomial algorithms
worst-case analysis (optimal solutions)

L. Tang, X. Xie, J. Liu. Crane scheduling in a warehouse storing steel coils. ZISE Transactions, 2014, 46(3): 267-282.



2. MCIS-E Production-Logistics-Energy Optimization with Feedback

] Shuffling problem in steel plants
] Slabs to be
‘ S —— shuffled Assign a storage slot for each shuffled item during
hS;?gcrI:t i ———— ract st retrieving all target items in the given sequence
]
Bottom of the ]
stack (slab 1) Decision Objective
The structure of a slab stack
Suitable storage positions Minimize shuffling and
for shuffled items crane traveling
For general case For special cases

- Polynomial algorithms
[ Shuffling coil of coil 1 F#% Demanded Greedy heuristics (optimal solutions)

[ 1 Shuffling coil of coil2 [] Non-demanded

L. Tang, R. Zhao, J. Liu. Models and algorithms for shuffling problems in steel plants. Naval Research Logistics, 2012, 59(7): 502-524.



2. MCIS-E Production-Logistics-Energy Optimization with Feedback

*o

“ For statistic and dynamic reshuffling The layout of a block

a column
Pt i
i

e
L4 -
P P

problem, an improved mathematical -

-
-

formulation and a simulation model

- <o, blocking
Lo2%e 2,27 objects
e’ Retrieving

object

are established.

Theight
5. | -y
width~~_ 1 __-féngth

% Five polynomial time heuristics and

their extended versions are proposed

and analyzed theoretically.

% The proposed heuristics outperforms

existing methods.

L. Tang, W. Jiang, J. Liu, Y. Dong. Research into container reshuffling and stacking problems in container terminal yards. IISE

Transactions, 2015, 47(7): 751-766. (IISE Transactions Best Applications Paper Award)



2. MCIS-E Production-Logistics-Energy Optimization with Feedback

Minimize the moment
imbalance

Minimize the shuffling

Minimize the dispersion of
coils for the same destination

fore

stern

row

left

Structural constraints

column

[ Shuffling coil of coil 1 Demanded

[ Shuffling coil of coil 2 ] Non-demanded

Weight restriction
constraints

Operational constraints

L. Tang, J. Liu, et al. Modeling and solution for the ship stowage planning Modeling and solution for the ship stowage planning problem of

coils in the steel industry. Naval Research Logistics, 2015, 62(7): 564-581.
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Energy Scheduling

g . @ Solution Energy saving w0 :
. 4 * Benchmark - -\\\ > /-\\' 9
Energy consumption and regeneration data . 60 —
: Analysis Analyze cause 50 \*/\\.,/ ﬁ
Filter out Complement Bottleneck 12 -
exceptional data the missing data I L gileE L] A Tdentify bottleneck . (@)
. ¥ Energy m
| Obtain actual process data v (» LUELEON Analyze consumption q D,

'* *

;ron

Steel Heating Hot Acid Continuous
smelting making furnace rolling rolling annealing
Liquid Cold
i & s
igh Normal

temp

7N

uoneziwundo

Pulverized Coal



2. MCIS-E Production-Logistics-Energy Optimization with Feedback

Gas scheduling

Comprehensive allocation of gas system | XnewsXy ez (g -H) :IZ> Constraint

e Determine: allocation plan of BFG, COG, LDG v.<O'p.i=12..1 | definition

e Multi-objective: minimize consumption cost, purchase cost, emission | | —- - - - - oo

{0 LgEe :IZ> Soft constraint
l-e

|
|

cost, and energy holding cost :
: RERECE definition
|

e Solution method: soft constraint handling NSGA-II

L e e e e e e e e e e e e = = - ]

T T H H q T - I -
E Mlne E i Cokdng E E i i ste-elmaktlngl i E E Rolllmz
: . H H i i < hard constrained

HE : i
i ﬂ( Ei o e e ! i E E / o =5
PRI IR I AnaA -
= osinter iy i mnme“ % hot rotler | o e=100
i Iron ore E i ma-l:hln-e-i H E ;Y R i o =200
1 Vi I ¥ H i i heatingfurnace @ ' —
¥ U i f : , 3B ; =200
E E ' ' a H H i 4 b cold roller i o =300

== =
& —
i oS— H o2
i S— i
f——1 Pl ' i
i oy '
el (N B steam f=™ H 0 L L |
e = By P P i o 0.2 1.2 1.4
oA ! H
" Electrlc poweer E E Gas stat hon E - E mergy managemenrenter E

Y. Zhang, G. G. Yen, and L. Tang. Soft constraint handling for a real-world multiobjective energy distribution problem. International Journal of

Production Research, 2020, 58(19): 6061-6077. 42



2. MCIS-E Production-Logistics-Energy Optimization with Feedback

Steam scheduling

electricity generation

Steam scheduling by coordinating demand and

>

User
demand

O

Make full use of
excess steam
resources

S

Electricity
generation

;“'1ﬁ ﬁ%ml

E:

J =

A5 -
P T TRATIT]

E:

J =

A5 -
P 11010 21010

Waste heat boiler

Electricity generator

Rolling

Depressor ;
High pressure steam

ﬁ RH Emission l

Sintering

faVaVal

Domestic E——® Coking 7 Steelmaki issi l
mes 9 | Steeima Eg. Emission

Objectives

e Maximize electricity generation upon demand
z=max > > (U, +V,X; ;, +WR,)

Supply capacity constraints
ad <> x, <ab by < %y <bj, r® <R, =min(x,,K), g’ <Q; <min(x,q’)

Xy = min{ail, max(aio, SP— > (Xs+Ri+Qy )j}

iel,UlL,Ul,

Fluctuation, safe flow constraints
o max (033 (R )0 | R7 - max(0.370, < )

i jeds

‘sz:(xtu + Ry +Qy ) _Zi: g:% (thl,ij + R+ Qt—l,i)

< &P

Steam demand constraints

nzzxﬁj >Stz nDZZ(Xtij+Rti+Qti)>StD

Data Analytics and Optimization for Smart Industry
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Oxygen scheduling

Minimize operating cost of oxygen system
Dynamically balance and optimize the
y y p Z:ZZ[Ci’Fﬁ"'CiA‘An"'CiY .Yti+lyti'ci'0'7Bij
oxygen system i 2
® Supplied by oxygen generator Oy —O 1|< e Gu=Gy, +Ye—D,, G’=G, =G}
® Supplied by liquid oxygen system
PP y liq ygen sy yo =max{0.(4, — fin))} % =D d, <3Gy,
Liquid O, : . e ] . an as
m Iq:I?_‘ o Pipeline pressure, fluctuation limitations
- Emission
1#ASU (Hi—H )+ 2 Sy <2 A H°<H, <H’
Dﬁ LIy H,—H - -
2#ASU — RET ‘tH—tltl =35 Ai = L& A <Oy
U;‘gj Q Hot rolling Oxygen demand constraints
1 | Zst'+ZYti+(Ht_Ht—l)+Ft:Zoti
h ) il AAAA =
4#ASU Iron-making  Steelmaking Cold rolling

. Che, Y. Zhang, L. Tang, S. Zhao. A deep reinforcement learning based multi-objective optimization for the scheduling of oxygen production system in

integrated iron and steel plants. Applied Energy, 2023, 345: 121332.
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Integrated Multi-Energy Scheduling

+ Research Background <+ Reinforcement Learning Based Improved
In steel enterprises, by-product gases, steam, and Lag_ranglan Relaxa.tlon Algorithm |
electricity constitute a coupled system and the supply A reinforcement learning based method for step size
and demand balance of all energy carriers is update is proposed to dynamically adjust the
maintained within the scheduling period. multipliers Lagrangian relaxation algorithm.

1 Lagrange relaxation

|

‘ . ' v algorithm iteration !
g Mmoo W - ' -

===t 1 —> —> —> —> :

|
Blast Furnace Coke Oven BasicOxygen Furance | | | | Lo D o o o o o e e o o o o o o o o e o o e e e e e e L D e e e D D D e . !
By-product gas holder ; Reward
Action State
<
BFG Holder COG Holder LDG Holder Gurobi Solution Time(s) Gap(%) LT in L
BFG Item Time(s) 0.9 4
coG 1 LR RL-LR LR RL-LR 0.8 -
LDG -
Energy Users Steam-Electricity System 1 3.6 6.3 35 0.8 0.9 0.7 1
e <o ot T
4 3 1485 417 27.2 13 w0 %71
3 04 A
4 420.0 66.3 48.0 1.2 1.0 g .
0.3 1
5 859.1 127.0 77.9 1.7 0.9 0 ] @p = 1%
6 2841.8 207.2 193.7 15 1.1 \
L2 Users L3 Users 0.1 4
7 >3600 430.7 380.8 1.7 1.3 0 =
8 >3600 520.8 409.6 16 1.2 123456789 10H12I314I5I_(!l?18]9202]222324252627282930
Number of iterations
Electricity Users . . . . .
The algorithm solves the time comparison Algorithm dual gap comparison

C. Miao, S. Zhao, L. Tang, J. Liu, Y. Zhang. A Reinforcement Learning Based Lagrangian Relaxation Algorithm for Multi-Energy Allocation Problem in Steel

Enterprise. Computers & Chemical Engineering, 2024. (Revision)
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Integrated Scheduling of Production and Energy

+ Research Background

Cold rolling in steel production is a typical power
intensive process. Steel companies can take advantage
of processing flexibility to make better use of electric
power, and thus reduce the energy cost.

Continuous anncaling Electric galvanizing

/ \\ Fine |nioducts
- . . Yy N
Coils Acid rolling Batch anneal ing Rewinding /‘/ .%
&;, y N = N N P
& {8888 ] mal

RIFLL])

Continuous galvanizi

ng Fine products
—IWVE—

The integrated scheduling problem of the rolling sector
with consideration of energy consumption under time-
of-use electricity prices was proposed to optimize the
coordination of production and electricity consumption,
and minimize the typical production costs.

< MINLP modeling with generalized
disjunctive programming constraints

Based on a continuous time representation, the
MINLP/GDP model was formulated with nonlinear and
disjunctive constraints, and then reformulated as a
tight MILP model through hull reformulation and
exact linearization.

cpl cpr Rs‘k _X _‘Rs,k
,Ip ,w [ &‘k.tp | Bs‘k,tp Cs‘k,tp ATs‘k‘lp =0
| | —s —s —s oS
No interaction ' ! 5 thy > cpg thy <cpg the > cp tb=0
A A, =True k 2 Cpy k < Cpy k = CPy
with any p i E = —s S = f s S i =0
! i, <cp, |V tf, >cp, v the <cp,, k
B ! B, =True s —s =
_ \ : o ATs‘k,lp = Sdk tf K < Cptl; tfk > Cp(L;
‘ AT, =4 = ¢ ) _ — —
i ==y i Ciyp =True | | AT, =t —cp} | | AT, =cpp —th |
D E F.
R, = False | [ skip —s . —s . —s u
- i the <cp,, the <cp,, the > cpy,
' ' E., =True v — Y v VipeTP
! ! skap = N u pr] L prad u
I 1 tf, > Py tf, < Py tf, > Py
| 1
U L — —
:K—Ip—ll F,,,=True | [ATop =CPy —CPy ATy, =0] [ATg,, =0
| ]

GDP is used to formulate the possible interactions of a time slot with a constant time period

S. Zhao, 1. E. Grossmann, L. Tang. Integrated scheduling of rolling sector in steel production with consideration of energy consumption under time-of-

use electricity prices. Computers & Chemical Engineering, 2018, 111:55-65
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Information Feedback

[ -
1 i i~ati icati I Manufacture-Circulation
Developer communi Application store Application secondary development 1 anu
: P ty PP PP Y P 1 Industrial Platform
1 . Equipment . : . :
: Isr:)clllljits:(t)rrz/ lngsugr;_ Ma”nabgemtgnt rental and ; Industnaij_t Appllcatlonl
T collaboration collaboration sharing Inance creqi |ayer i
1
——————————— —— - 1 1
I k I ! { Optmizaton  Data | Industial | Industrial applcation  professonal: i Network
Low /atency 1 1 latf ! Optimization Data Industrial Industrial application profesls|ona|: i
Manufacture- | L 1 : Platform ' model model model development sevices | paag layer 1 access
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TF . |
Facility layer ) T Industrial equipment access == Information system access protocol analysis data pre-processing
Production control network o

| Industrial robot | | Intelligent sensor | | Production facility | [ Instruments and apparatus |




2. MCIS-E Production-Logistics-Energy Optimization with Feedback

< A series of manufacturing optimization software systems are developed which
have been successfully applied to more than 40 enterprises in steel, equipment

manufacturing, logistics, and energy industries.
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3. PDDE-based Quality Analytics and Dynamic Optimization — PDDE

Decision-
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3. PDDE-based Quality Analytics and Dynamic Optimization — Quality perception (P)

[ Fusion of Multi-dimensional Intelligent Technologies ]
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3. PDDE-based Quality Analytics and Dynamic Optimization — Quality discovery (D)

Case 1: Iron Quality Prediction

Multi-objective Evolutionary Ensemble Learning

Fusion of thermodynamic
model (meso) and process
data (macro)

Sub-learner based on fusion
of meso and macro data

Multi-objective evolutionary
algorithm

Evolving the structure and
parameters of ensemble
model

Process data and

Macroscopic

Multi-objective
evolutionary
learning

Thermodynamic

Mesoscopic

Case 2: Steel-making Dynamic Prediction

Challenges Dynamic analytics method
® Cont_inuoustprediction ® Multi-stage modeling strategy
requiremen . :
g ® Dynamic model with feedback
® Unstable performance of o Hvbrid k | functi
single model ybrid kernel function
e Dynamic adjustment ® Differential evolution algorithm
requirement
l Blow oxygen Measurement
Molten iron and steel scrap Augxiliary materials
M Vi bbbl

Fume hood —»df T
Pour out j

molten steel ——>
from spout
Impurities are
oxidized on
the surface

Water-cooled
oxygen lance

Refractory
lining

Molten steel

Blowing at bottom

First stage

Second stage

Tapping

Whole blowing process i

|5 | 5
1 X | X
Y.
== Stage 1 ] Y Stage L Yu >

X. Wang, T. Hu, and L. Tang. A multiobjective evolutionary nonlinear ensemble learning .... TEEE Transactions on Neural Networks and Learning Systems, 2022, 33(5): 2080-2093.

C. Liu, L. Tang, J. Liu, Z. Tang. A dynamic analytics method based on multistage modeling for a BOF steelmaking process. IEEE Transactions on Automation Science and Engineering, 2019, 16(3): 1097-1109.




3. PDDE-based Quality Analytics and Dynamic Optimization — Quality discovery (D)

Features of heating process

® Dynamic and nonlinear

® Difficult to obtain mechanism
model

® Obvious prediction error with

Case 3: Temp Prediction of Reheat Furnace

Analytics method

® [S-SVMis used to
compensate for the prediction
deviation of the slab
temperature

® Significantly improve the

Case 4: Strip Quality Analytics

Multi-objective Ensemble Learning

Least square support vector
machine (LSSVM)

¢ Sub-learner in the ensemble
learning

Multi-objective evolutionary

¢ Evolving the ensemble

i - algorithm learning model
mechanism model model prediction accuracy 9 9
- e
@ m"f:"":“h WOERAL AT WOMEE  WSWE eEwn  RdEs
/ \ Em:!‘li 5”1‘;“)‘“ ‘ﬂgkjﬂ! \9 “ ‘\“\ Q ﬂ’l‘;ﬁzﬂtw “:“EW W’:’:{! REARRY B RR
Deviation Compensation " Frnmer st ke
LS-SVM ) e - ‘
Mechanism Model EEan N - i v -
MOdeI L g ol g , .o { U > : M '
g8 $
N Y, ) .- Jd
[ Mixed Model ] e i S —

[eias] ik |

X. Wang, Y. Wang, L. Tang, Q. Zhang. Multiobjective ensemble learning with multiscale data for product quality prediction in iron and steel industry, JEEE Transactions on Evolutionary Computation, 2024, 28(4): 1099-1113.

X. Wang, Y. Wang, L. Tang. Strip hardness prediction in continuous annealing using multiobjective sparse nonlinear ensemble learning .... IEEE Transactions on Automation Science and Engineering, 2022, 19(3): 2397-2411.



3. PDDE-based Quality Analytics and Dynamic Optimization — Process design and optimization (E)

Quality analytics and optimization for production process

Dynamic setting optimization Basic Setting Calculation 1

|
Dynamic Adaptive Adaptive Optimization :

Actual data collection

| E |
-------I

i- i. ¥ - _ L
- E . "- ”I" - ! ! )
Ironmaking Steelmaking Continuous casti‘hg% see Slab library

r

Significance: Improve product quality and economic efficiency, reduce energy consumption, and make the production process in optimized operating state.



3. PDDE-based Quality Analytics and Dynamic Optimization — Process design and optimization (E)

Multi-objective Process Optimization for Iron-making Process Optimization for Steel-making

Challenges Dynamic analytics method

Mechanism-data fusion model ¢ DAO-based multi-objective ® Black-box model ® EDA with a hybrid distribution
for iron quality process optimization model model
® High temperature

Multi-objective Process Optimization based on Learning

® Resampling

Multi-objective evolutionary ¢ Optimal setting for key ® Large number of variables °
algorithm based on learning operation parameters

Local improvement

E o E =
IF _________________ :Constraint | __T_____: " 01 0.1
I Fuel | Smelting | Equipment | s Objectives | - — — . g —=—EDA 8 —= EDA
: I I e Quality ! I I e —®—EDA-R g —&- EDA-R
__________________ ] | | | > —&— EDA-RL > —A— EDA-RL
r————— \ = — — — — — — I : » Stability | solver | MOEA | % 0.06¢ -%0 ool
| 1 9 - 1 | | [ c VY
|+ Process data. ;| [ronquality |! opjective ! Cost T I T T
1 g | evaluation | Parameters I I 2 e
- 1 Stability | .« Burdenil ' Machine |} 2 g
I+ Mechanism | ! I ! | || learning |} g z
B, ! _ I . distributio | g 0.01 . . . . . 0.08 . . . . .
1 | Economic cost |, n 1 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
T \——————- J : 1 Function Evaluations(FES) Function Evaluations(FES)
Optimized operation decisions = "qurat'lﬂﬁ' 4
£ i The convergence curves of EDA, EDA-R and EDA-RL

L. Tang, C. Liu, J. Liu, X. Wang. An estimation of distribution algorithm with resampling and local improvement for an operation optimization problem in steelmaking process. IEEE Transactions

on Systems, Man, and Cybernetics: Systems, 2020.
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Multi-objective Process Optimization for Hot Rolling

Multi-objective Evolutionary Algorithm Based

on Reinforcement Learning

DAO-based modeling method Multi-objective process

Multi-objective Process Optimization for Colding Rolling

Multi-objective Evolutionary Algorithm Based on

Machine Learning

Multi-objective ensemble DAO-based multi-objective

for the reheating furnace

optimization model

Multi-objective evolutionary
algorithm based on DQN

Optimal setting of operation
parameters in the furnace

learning model of strip quality

process optimization model

Multi-objective evolutionary
algorithm based on learning

Optimal setting of operation
parameters and new product

B E

<«—— FuelInput

Hybrid Process Model

Heating @ I—’ FurnaceT%nperature
oL

Multi-objective Operation
Optimization

T T

Annealing
bl « Strip quality!
+ Unit :
capacity |
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3. PDDE-based Quality Analytics and Dynamic Optimization — Product quality design (D)

Material Production Equipment Manufacturing Industrial System
@ D
Metallurgical
equipment
- ®
. 2
Stee_l Logistics
DO & it yoae - 4
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Energy
equipment
‘e J
& D
High-end
equipment
N J
Design and Processing Machining and Assembling Operation and Maintenance

Data Analytics and Optimization for Smart Industry



3. PDDE-based Quality Analytics and Dynamic Optimization — Product quality design (D)

X/
£ X4

Material Discovery

Microstructure: In steel smelting process, metallographic
organization identification is a critical step. The idea of fusing
neural network and optimal control model is proposed, which is
combined with fractal theory to solve the problem. Ultimately,
a quantitative analysis of the metallographic organization is
achieved.

Topological phase transition: In steel industrial production,
process parameters determine the organization properties. A
material structure prediction model based on thermodynamic
model and topological phase transition is constructed from the
mesoscopic viewpoint to realize dynamic regulation and
optimization of material structure.

Microstructures Topological phase transition

*

Material Design

Material design: From the mesoscopic view of steel
materials, the mapping relationship between material
composition, structure, and properties is established based on
networks and multi-objective evolutionary methods, with
synergistic control and optimization of steel property design
and material selection for new material design.

Process design: In response to steel performance
requirements, the integration of mechanism and deep learning
model is applied. A differential evolutionary algorithm is used to
dynamically adjust the steelmaking process parameters to
control and optimize the metallurgical organization.

aimeladwa] /¢
] Q

0.8 1.0 1.
C(%X) ——=

Process design

Material design
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4. MCIS Environmental Analytics and Optimization

Enterprise Industry System

Ai BIfE Qi BIfE

A tree A forest An Eco-system
A single enterprise material Homogeneous enterprise Heterogeneous enterprise
transformation similar products elements connection

basic unit a whole collection ecosystem



4. MCIS Environmental Analytics and Optimization

MCIS from Steel Industry to Equipment Manufacturing ( F Ring)

% The steel industry provides important raw material for equipment manufacturing, and the metallurgical equipment, logistics
equipment, energy equipment and high-end equipment produced by equipment manufacturing serve the steel industry,
forming a manufacture-circulation industrial system (MCIS) with Northeastern characteristics of the modern industrial system.

Logistics transformation

Equipment operation and maintenance

Metallurgical equipment Mobius stri P
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4. MCIS Environmental Analytics and Optimization

Carbon Emissions of Steel Industry

% In 2023, China's CO, emissions is approximately 12.6
billion tons. Power, steel, aluminum, cement,
petrochemical, and coal chemical, as well as two
fields including transportation and construction cover
over 90% of the country's total CO, emissions.

% Over the decade from 2011 to 2020, the average
growth rates of the value added by domestic
manufacturing and crude steel production were 7.9%
and 5.1%, respectively, providing stable support for
the high-quality = development  of  China's
manufacturing industry.

% The global steel industry accounts for approximately
7% of the total emissions from the energy system,
making it the manufacturing sector with the highest
carbon emissions, primarily stemming from the use of
fossil fuels.

% The CO, emissions from the steel industry account for
about 14% of total industrial CO, emissions in China,
with approximately 2 tons of greenhouse gases
emitted per ton of steel produced, of which 90%
originates from the pre-iron and ironmaking.
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4. MCIS Environmental Analytics and Optimization

Environment Perception

<+ Background: steel production involves multiple processes,
pollutants, and carbon emissions. Extreme conditions affect
data accuracy and stability. Representing pollutant and
carbon information in a single modal feature is difficult.

<+ Perception method: fusion perception technology uses
structured data, text, voice, and images for accurate, real-
time, and stable acquisition of pollution and carbon emission
data. Multi-source data mining enables feature fusion,
enhancing prediction reliability.
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Environment Discovery

<+ Background: Pollutants, carbon emissions, production
processes, output, product quality, energy, and raw material
consumption have complex coupling relationships.

<+ Discovery method: mechanism and data fusion method
leverages mechanism and data analytics models to analyze
multi-source data patterns, identify key pollutant emission
areas and abnormal conditions, and  obtain pollutant
emission characteristics and trend predictions.

Panhﬂﬂau% NOx s02

Prediction of pollutant generation
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4. MCIS Environmental Analytics and Optimization

Real-time Process Optimization

<+ Background: The steel industry emits large amounts of
CO,, SO,, NO,, etc.. Pollutants, carbon emissions, production
processes, output, product quality, energy, and raw material
consumption have complex coupling relationships.

<+ Process optimization: Analyze relationship between
process control parameters, emissions and energy
consumption. Formulate multi-objective process optimization
model based on mechanism and multi-modal data to
minimize pollutant and carbon emission.
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Process Design Optimization

<+ Background: Carrying out full process design and formula
optimization from source blockage to end-point treatment is
an important guarantee for reducing pollution and carbon
emissions.

< Process Design: investigate full process optimization design
from the systematic point of view to form a pollution and
carbon reduction path. Optimize the ingredient scheme to
achieve harmless manufacturing of steel materials based on
source blockage.
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4. MCIS Environmental Analytics and Optimization

MCIS from Steel Industry to Equipment Manufacturing ( F Ring)
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4. MCIS Environmental Analytics and Optimization

MCIS from Steel Industry to Equipment Manufacturing ( F Ring)

Steel Industry

Equipment Manufacturing

Logistics System

Environment & Energy
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