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H plan: a interdisciplinary development plan involving two main    
             disciplinary groups of Northeastern University. 
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1. Research Background —— Steel is a Key Driver of the World’s Economy 
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China's industrial output ratio World Steel Production 
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 China has been the largest steel producer in the world for the last twenty 
consecutive years 

 In 2018, China's steel output has reached 928 million tons, accounting for 
51.3 percent of the world's steel output 

 Steel industry has been one of the pillar industries in China’s national 
economy 

1. Research Background —— China is the Largest Steel Producer  
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Ironmaking  Steelmaking Continuous Casting  Slab Yard 

Hot Rolling  

Cold Rolling  Coil Yard Coil Yard Shipping 

Features: continuous and discrete production, huge devices, high-temperature    
                operation, mass consumption of energy and resource. 

1. Research Background —— Steel Production Process 
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1. Research Background —— Challenges Faced by Steel Industry  

Data Analytics and Optimization 
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 Modelling and Algorithmic Challenges 

 Conflicting objectives 

 Complex technology and management constraints 

 Large scale integer variables and strongly NP-hard  

 Cannot directly apply or generalize existing algorithms 

Modelling 

Algorithmic 

  New Characteristics 

 Complex physical and chemical process 

 Large variety and low volume products  

 Complicated logistics structure 

2. System Modeling and Optimization Method  

Complicated  
Logistics Structure  

Huge Chemical 
Equipment 

Large Variety and 
Low Volume  

Complicated  
Production Process 

Rolling Process

Iron 

Steel 

Slab 

Coil 

Data Analytics and Optimization 



System Modeling  

Jean-Jacques Rousseau: 

The art of musicians does not lie in 

depicting images directly, but in placing 

the mind in the emotions that these 

objects can create in the mind.  

2. System Modeling and Optimization Method  

Data Analytics and Optimization 
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2. System Modeling and Optimization Method — System Modeling 
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2. System Modeling and Optimization Method — System Modeling 
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 A system modeling method combining mathematical optimization and 
data analytics is proposed. The mathematical integer programming 
model for production scheduling is established, and complementary part 
is carried out through data analytics. 

数据解析 
（AI） 

数学优化 
（OR） 

Mathematical Modeling Data Analytics  

Industrial Data 

Complicated 
constraints 

Technological
 procedure 

Model 
Parameter 

Data Analytics and Optimization 

2. System Modeling and Optimization Method — System Modeling 



 The problem is transformed into the 
optimization combination of multiple 
batch schemes of jobs, and the Set-
Packing model is established; 

 A batch scheme of jobs is defined as 
an element, which includes the 
combination of jobs; 

 The sub-problems are to describes the 
generation rules of batch schemes of 
jobs; 

 Effectively reduce the number of 
variables and constraints and improve 
the solving efficiency of the model. 
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Set-Packing modeling 
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L. Tang, G. Wang. Integrated charge batching and casting width selection at Baosteel. Operations 
Research, 2014, 62(4): 772-787. 

2. System Modeling and Optimization Method — System Modeling 



 The space-time is discretized into 
grid and depicted based on 
network graph. Each node 
represents a location, each edge 
indicates a crane's move between 
two locations in a stage; 

 The spatial location includes all 
the locations in the storage area 
and the entry, exit and initial 
location of the crane; 

 The scheduling of task sequence 
is transformed into the allocation 
of crane movement in stages, and 
an event-based space-time 
network model is established. 
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Route of crane 

Route of coils 

Space-time network flow modeling 

Y. Yuan and L. Tang.  Novel time-space network flow formulation and approximate dynamic programming approach for  
the crane scheduling in a coil warehouse.  European Journal of Operational Research, 2017, 262(2): 424-437. 

2. System Modeling and Optimization Method — System Modeling 
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2. System Modeling and Optimization Method — Optimization Method 
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Structure   

2. System Modeling and Optimization Method — Exact Algorithms 

Benders Decomposition Algorithm 

L. Tang, D. Sun and J. Liu. Integrated storage space allocation and ship scheduling problem in bulk cargo 
terminals. I IE Transactions, 2016, 48(5): 428-439. (Featured Article) 
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Hybrid Strategy of OA and 
GBD 

Multi-generation Cuts 

Partial Surrogate Cuts 

Accelerating 
convergence 

Tightening 
lower bound  

Improving 
efficiency  

Structure   Outer Approximation Algorithm (OA) 

L. Su, L. Tang and I.E. Grossmann. Computational strategies for improved MINLP algorithms. Computers & 
Chemical Engineering, 2015, 75: 40-48. 

NLP NLP NLP 

MILP + MC 

… 

2. System Modeling and Optimization Method — Exact Algorithms 



Performance  OA Algorithm with Quadratic Cuts  

L. Su, L. Tang, D. E. Bernal, I. E. Grossmann. Improved quadratic cuts for convex mixed-integer nonlinear 
programs. Computers & Chemical Engineering, 2018, 109: 77-95. 

 Integrate the strategies of scaled quadratic 
cuts with multi-generation cuts for Outer 
Approximation 

2. System Modeling and Optimization Method — Exact Algorithms 
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2. System Modeling and Optimization Method — MetaHeuristics  

Hybrid Multi-objective Evolutionary 
Algorithm  

L. Tang and X. Wang. A hybrid multiobjective evolutionary algorithm for multiobjective optimization problems. 
IEEE Transactions on Evolutionary Computation, 2013, 17(1): 20-45. 
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Iteration 

PIDE

PIDERIM

Algorithm has a fast convergence speed  

Performance  Improved Differential Evolution Algorithm 
for Dynamic Scheduling 

L. Tang, Y. Zhao and J.Y. Liu. An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous 
casting production. IEEE Transactions on Evolutionary Computation, 2014, 18(2): 209-225. 

2. System Modeling and Optimization Method — MetaHeuristics  
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Experimental demonstrate 
the algorithm’s outstanding 

performance 

Individual–Dependent  
Parameters Setting 

Individual–Dependent  
Mutation Operator 

Perturbations 
with Small Probability 

L. Tang, Y. Dong and J.Y. Liu. Differential evolution with an individual–dependent mechanism. IEEE 
Transactions on Evolutionary Computation, 2015, 19(4): 560-574. 

2. System Modeling and Optimization Method — MetaHeuristics  
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3. Production Scheduling —— Steel Production 

Data Analytics and Optimization 
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Production:  Ironmaking/Steelmaking/Hot rolling/Cold Rolling 
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3. Production Scheduling —— Steelmaking Stage 
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3. Production Scheduling —— Charge Batching of Steelmaking  

L. Tang, G. Wang, J. Liu, J. Liu.  A combination of Lagrangian relaxation and column generation for order batching 
in steelmaking and continuous-casting production. Naval Research Logistics, 2011, 58(4): 370-388. 

 
CF-1 
CF-2 

 

RF-1 
RF-2 

  
CC-1 
CC-2 

 

Charge1 

Charge2 Charge3 

Cast 1 

Waiting 
time 

Charge4 

Charge5 Charge6 

Cast 2 Cast 3 

Charge7 

Waiting 
time 

Charge9 Charge8 

Waiting 
time 

t 

Open-order Slabs 

Customer-order Slabs 

Open-order Part 

Customer-order Part 

Charge 
High variety  
Low volume 

 Minimize assignment cost 
 Minimize open-order slabs 
 Minimize unfulfilled cost of order 

Group all the slabs of 
different customer 
orders into batches 

p-median clustering 
with capacity and additional  
technical constraints  

 Lagrangian relaxation  
 Column generation  



Objective 

• Maximize tundish utilization 
• Minimize total grade switch and 

width switch cost 

Decisions 
• Batch and sequence charges to 

form casts for the given tundishes  
• Select a casting width for each 

charge in a cast 

Constraints 

• Grade switch constraint   
• Width switch constraint 
• Lifespan of tundish  
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C= Charge 

L. Tang, G. Wang. Integrated charge batching and casting width selection at Baosteel. Operations 
Research, 2014, 62(4): 772-787. 

3. Production Scheduling —— Cast Batching of Steelmaking  



3. Production Scheduling  —— Steelmaking Scheduling  

tundish 

ladle 

Steel making Continuous Casting (CC) 

Charge 

Cast 

L. Tang, J. Liu, A. Rong, Z. Yang. A mathematical programming model for scheduling steelmaking-continuous 
casting production. European Journal of Operational Research, 2000, 120(2): 423-435. 

CF-1 
CF-2 

RF-1 
RF-2 

CC-1 
CC-2 

Waiting time 

Charge 1 

Charge 2 Charge 3 

cast 

time  
• Level 1: cast sequences on the casters 
• Level 2: sub-scheduling 
• Level 3: rough scheduling 
• Level 4: elimination of machine conflicts 

Four-level scheduling 

Solve machine conflicts in (SCC) 
production scheduling based on  

JIT idea 

Just-in-time idea 

• Improve productivity of large devices 

• Shorten waiting-time between operations 

• Cut down production costs 

Beneficial effects 



  

Traditional batching machines are mainly divided into three 
types: (1) burn-in  (2) fixed batch  (3) serial batching 

 A new kind of batch scheduling 

 We analyze the semi-continuous 
batch scheduling problem, and 
present optimal algorithm 

The heating process of Tube-billets in 
heating furnace 

Characteristics of Semi-Continuous 
 Batching Scheduling 

Handle  
several jobs 

simultaneously 

Begin and finish 
processing together 

The same 
completion time 

Classical Batching  
Machine Scheduling  

The new Semi 
-Continuous Batching  
Machine Scheduling 

Enter and leave the 
machine one by one 

The same batch 
begin processing 
at the same time 

Respective start 
time 

Respective 
completion time 

L. Tang, Y. Zhao. Scheduling a single semi-continuous batching machine. Omega, 2008, 36(6):992-1004. 

3. Production Scheduling  —— Semi-continuous Batch Scheduling  
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Objective 

 Minimize the total 
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 Sequence of adjacent 
jobs to be processed 

Decisions 

L. Tang, J. Liu, A. Rong, Z. Yang. A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & 
Steel Complex. European Journal of Operational Research, 2000, 124(2): 267-282. 

3. Production Scheduling  —— Hot Rolling Scheduling 
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each empty furnace 

Select a median coil 
for each batch 

Maximize  
Reward 

Minimize 
Mismatching 
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Constraints 
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Constraints  
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3. Production Scheduling —— Cold Rolling Scheduling 

L. Tang, Y. Meng, Z. Chen, J. Liu. Coil batching to improve productivity and energy utilization in steel 
production. Manufacturing & Service Operations Management, 2016, 18(2): 262-279.  
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4. Logistics Scheduling —— Logistics in Steel Plant 

研究背景 

Logistics: Loading(Un)/Transportation/Shuffling/Storage/Stowage 

Data Analytics and Optimization 



4. Logistics Scheduling —— Shuffling 

Stack 
height 

slabs to 
be 

shuffled 

Target 
slab 
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the stack 
(slab 1) 

The structure of a slab stack 

The structure of a coil stack 

Shuffling coil of coil 1  Demanded 
Non-demandedShuffling coil of coil 2

Upper 
level 

Lower 
level 12

L. Tang, R. Zhao, J. Liu. Models and algorithms for shuffling problems in steel plants. Naval Research 
Logistics, 2012, 59(7): 502-524. 

Shuffling Problems in Steel Plants 

Assign a storage slot for each shuffled item during 
retrieving all target items in the given sequence  

Objective 

 Minimize shuffling and 
crane traveling 

 Suitable storage 
positions for shuffled 

items  

Decisions 

For special cases 

 Polynomial algorithms 
(optimal solutions) Greedy heuristic 

For general case 



 For statistic and dynamic 

reshuffling problem, an improved 

mathematical formulation and a 

simulation model are established, 

respectively； 

 Five polynomial time heuristics 

and their extended versions are 

proposed and analyzed the-

oretically； 

 The proposed heuristic outper-

forms existing methods. 
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length
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blocking  
objects

The layout of a block 
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container 

Retrieving  
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4. Logistics Scheduling —— Reshuffling and Stacking 

L. Tang, W. Jiang, J.Y. Liu, Y, Dong. Research into container reshuffling and stacking problems in container terminal 
yards. I ISE Transactions, 2015, 47(7): 751-766. (IISE Transactions Best Applications Paper Award). 



4. Logistics Scheduling —— Crane Scheduling  
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L. Tang, X. Xie, J. Liu. Crane scheduling in a warehouse storing steel coils. I IE Transactions, 2014, 46(3): 267-282  

Crane scheduling problem 
Determines the transportation sequence for all 
demanded coils and shuffled position for each 

blocking coil. 

Objective 

 Minimize the time by 
which the retrieval of 

all target coils is 
completed 

Retrieval sequence of 
the target coils and 

shuffled positions for 
blocking coils  

Decisions 

For special cases 

 Polynomial algorithms 
(optimal solutions) 

Heuristic algorithm & 
worst-case analysis 

For general case 



Minimize the 
moment imbalance 

Minimize the 
shuffling 

Minimize the 
dispersion of coils for 
the same destination 
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row
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Shuffling coil of coil 1  Demanded 
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4. Logistics Scheduling —— Ship Stowage Planning 

Structural 
constraints 

Operational 
constraints 

Weight restriction 
constraints 

L. Tang, J. Liu. Modeling and solution for the ship stowage planning Modeling and solution for the ship stowage 
planning problem of coils in the steel industry. Naval Research Logistics, 2015, 62(7): 564-581. 



4. Logistics Scheduling —— Coordinated Scheduling 

steel production and transportation  

Continuous 
Annealing Coils Yard Shipping 

Plant Warehouse Terminal 

Customer 1 

Customer 2 

Customer k 

Coil Production  

…
…

 

F. Li, Z.L. Chen, L. Tang. Integrated production, inventory and delivery problems: complexity and algorithms. 
INFORMS Journal on Computing, 2017, 29(2): 232-250. 

Integrated production, 
inventory, and delivery 

problem 

Complexity Analysis 

Case 1: order delivery is splittable  

Case 2: order delivery is non-splittable 

Most General Problems  
No approximation algorithms exist 

with a constant worst-case ratio 
Combined column generation and 

tabu search heuristic algorithms  
 



4. Logistics Scheduling —— Coordinated Scheduling 

…
…

 

L. Tang, F. Li, Z.L. Chen. Integrated scheduling of production and two-stage delivery of make-to-order products: 
offline and online algorithms. INFORMS Journal on Computing, 2019, 31(3):493-514. 

Integrated Production & Two-Stage 
Distribution Scheduling 

 
 
 
 
 
 

Offline problems involving a 
single production line  

Optimal dynamic programming 

algorithms 

Online problems 

Online algorithms  

Competitive ratios analytics 

Offline problems involving 
multiple production lines  

Fast heuristics 

Worst-case & asymptotic performance 

 Obtain a joint schedule of job processing at 
the plant and two-stage shipping  

 Optimize a performance measure that takes 
into account both delivery timeliness and total 
transportation costs 
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5. Energy Optimization 

Energy regeneration 

BFG COG LDG Steam 

Iron making Continuous casting Hot rolling Steelmaking 

Energy supply 

Electricity Heavy oil Pulverize 
coal 

Water BFG COG LDG Natural  
gas 

Oxygen Nitrogen 

Goal 
Determine energy purchased and secondary 

energy generated 
Minimize total energy cost 

Challenges  

Frequent change of production environment  
Unstable ratio of energy consumption and 

regeneration 

Data Analytics and Optimization 



Process-dimension 

Emission 
minimization 

cost 
minimization 

income 
maximization 

Production  Energy demand Balance  Price/cost 

calorific value 

pressure 
unit demand holding capacity emission 

limitation 

plan 

priority 

capacity 

In-out ratio 

mix requirement 

conversion 

storage balance 

supply-demand 

pressure balance 

emission penalty 

purchase price 

sale price 

objectives 

constraints 

Restrictions  

The proposed energy allocation 
method shows obvious superiority 
in effectiveness and stability than 
static method. 

5. Energy Optimization —— Dynamic Energy Allocation 

Objectives 
 Minimizing emission 
 Minimizing cost 
 Maximizing income  

Constraints  ADP Algorithm 

 Production  

 Demand 

Accomplish dynamic 
energy allocation 

 Balance  

 Price  

Data Analytics and Optimization 



5. Energy Optimization —— Comprehensive Scheduling of Gas System 
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Capacity & demand 
constraints  
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b xσ = Ω − ⋅∑∑
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Pipeline balance, flow, 
holding constraints  

{ }{ }0 0 1max , ,jt jt j j jH Min H H Hδ= +

( )0
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j ijt j

i
Oφ φ≤ ≤∑ 0 1
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i
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0 1  j jt jH H H≤ ≤

Comprehensive scheduling of gas system 

Determine: mixing plan of BFG, COG, LDG  

Goal: maximize value flow by controlling heat value 

Objectives： 

Minimizing emission Minimizing supply shortage 

Data Analytics and Optimization 



5. Energy Optimization —— Steam Scheduling 
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 Maximize electricity generation upon demand 

Objectives 

Supply capacity constraints 

Fluctuation, safe flow constraints 

Steam demand constraints 

Make full use of 
excess steam 

resources  

Electricity  
generation 

User 
demand 

Steam scheduling by coordination 
demand and electricity generation 

Results comparison 
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5. Energy Optimization —— Oxygen Scheduling 

Dynamically  balance and 
optimization the oxygen system 

Task  

Supply Modes  

Oxygen
 generator

Oxygen hold and pipe

Liquid
oxygen Evaporator

Steelmaking

Ironmaking

Other users

External users

Holding system consumptionOxygen generation system

Emission

Compressure

Minimize operating cost of oxygen system 

Oxygen demand constraints 

Pipeline pressure, fluctuation limitations 

Oxygen generators capacity, operating 
requirements 

1 0.7
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Supplied by oxygen generator  

Supplied by liquid oxygen system 
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Data Analytics  

Energy Optimization 

Production Scheduling 

Optimization Modeling and Method  

Research Background 

Logistics Scheduling 

Outline 



6. Data Analytics  
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Distance from the center of BF 

Theoretical burden curve

Radial inversetemperature curve

The relationship between temperature  
and burden distribution 

Case 1. Prediction of Burden Distribution 

Burden distribution Temperature of the burden surface 
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6. Data Analytics  

Torpedo Car Converter 

Case 2. Temperature Prediction of Molten Iron in Transportation  

Predict the temperature of 
molten iron in transportation 
process from blast furnace 
stage to converter stage  

Task 

 Multiple regression model 
 Multiple LSSVM modeling 

based on estimation of 
distribution algorithm 

 Hybrid modeling based on 
Kalman filter 

Prediction based on multi-model 

Blast Furnace 

Multi-Model training 

Model Updating 

Data processing Get on-line input variable 

Select prediction model  

Obtain process and terminal  
temperature of prediction 

Calculate deviations and  
Evaluate performance 

Data Analytics and Optimization 



  

                           First stage Second stage Third stage Reblow

              

              

              

              

              

              

              

              

              

              

              

              

              

              

              

Tapping

Whole blowing process

Molten iron and steel scrap

Blow oxygen Measurement

 Auxiliary materials

Production process of BOF steelmaking 

6. Data Analytics  

Case 3. Dynamic Prediction of BOF Steelmaking Process 

 Pour out
molten steel
from spout
Impurities are

oxidized on
the surface

Oxygen

Waste gas

Water-cooled
oxygen lance

Refractory
lining

Molten steel

Fume hood

Blowing at bottom 

Stage 1 Stage LStage 2

Stage 1 Stage L

Dynamic analytics method 

 Multi-stage modeling strategy 

 Dynamic model with feedback 

 Hybrid kernel function  

 Differential evolution algorithm  

 Continuous prediction requirement 

 Unstable performance of single model 

 Dynamic adjustment requirement 

Challenges  

Principle of multi-stage modeling in BOF steelmaking process 

C. Liu, L. Tang, J. Liu, Z. Tang. A dynamic analytics method based on multistage modeling for a BOF steelmaking 
process. IEEE Transactions on Automation Science and Engineering, 2019, 16(3): 1097-1109 .  



  6. Data Analytics  

Dynamic prediction results by M-LSSVM, M-HLSSVM and M-DHLSSVM. 
(b) C (a) T (c) Mn 

Data sets Indexes SVR RVM KELM DSAE M-DHLSSVM 

T 
RMSE 2.27E+01 1.26E+01 1.55E+01 1.13E+01 4.00E+00 

MAPE(%) 1.35E+00 1.47E-01 8.29E-01 5.96E-01 2.12E-01 
MAXE (℃) 5.08E+01 1.60E+02 6.34E+01 4.62E+01 1.56E+01 

C 
RMSE 9.99E-02 4.03E-01 1.45E-01 8.51E-02 3.94E-02 

MAPE(%) 1.53E+01 2.37E+01 2.29E+01 1.26E+01 3.45E+00 
MAXE (%) 2.00E-01 3.05E+00 7.73E-01 4.20E-01 1.28E-01 

Mn 
RMSE 3.00E-02 5.88E-02 1.25E-02 9.09E-03 9.73E-03 

MAPE(%) 2.05E+01 3.71E+01 7.82E+00 5.30E+00 6.47E+00 
MAXE (%) 5.06E-02 1.27E-01 2.64E-02 2.51E-02 2.22E-02 

Si 
RMSE 1.11E-01 1.38E-01 6.71E-02 9.78E-02 2.72E-02 

MAPE(%) 5.21E+02 2.87E+01 6.87E+02 3.61E+02 1.77E+01 
MAXE (%) 4.47E-01 6.78E-01 2.87E-01 3.23E-01 1.25E-01 

S 
RMSE 1.31E-03 3.46E-03 6.22E-04 6.94E-04 3.83E-04 

MAPE(%) 3.17E+01 9.14E+01 1.72E+01 2.26E+01 9.53E+00 
MAXE (%) 2.62E-03 7.85E-03 1.77E-03 2.01E-03 1.21E-03 

P 
RMSE 7.98E-03 1.28E-02 7.77E-03 9.73E-03 4.67E-03 

MAPE(%) 1.08E+01 4.00E+01 1.25E+01 1.37E+01 8.21E+00 
MAXE (%) 1.66E-02 5.59E-02 2.34E-02 2.38E-02 1.93E-02 

No. of Best   1/18 1/18 0/18 2/18 14/18 

Case 3. Dynamic Prediction of BOF Steelmaking Process 

C. Liu, L. Tang, J. Liu, Z. Tang. A dynamic analytics method based on multistage modeling for a BOF steelmaking 
process. IEEE Transactions on Automation Science and Engineering, 2019, 16(3): 1097-1109 .  
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6. Data Analytics  

 

 

Continuous casting

Slab yard
Reheating furnace

Hot rolling

Slabs Hot slabs

Fuel burner

Support beam

Slab

Case 4. Temperature Prediction of Reheat Furnace 

 

 

Mechanism 
Model 

LS-SVM 
Model 

Deviation  
Compensation 

Mixed Model 

Features of Heating Process  

Mechanism Model 

Dynamic   Non-linear 

Difficult to obtain 
Obvious prediction error 

Mechanism Model 

LS-SVM is used to compensate for 
the prediction deviation of the slab 
temperature 
Significantly improve the model 

prediction accuracy 
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Annealing Curve 

1 

2 3 
4 

5 
6 

8 

7 

9 

Continuous Annealing Process 

Difficulties in current production process modeling 

Fluctuations of strip quality have cause great economic loss to the cold rolling mill 

Case 5. Strip Quality Analytics of Continuous Annealing  

Production process 
is very complex 

Exact mechanism 
model is not available 

Dimensions of data 
are more than 30 

Dimensions of data 
are strongly correlated 

6. Data Analytics  
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Case 5. Strip Quality Analytics of Continuous Annealing  

Multi-objective Ensemble Learning 

Least Square Support Vector 
Machine (LSSVM) 

Sub-learner in the ensemble 
learning 

Multi-objective Evolutionary 
Algorithm 

Evolving the ensemble learning 
model 

6. Data Analytics  
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Motivation 

Case 6. Process Monitoring and Diagnosis of Continuous Annealing 

Tension fluctuations 

Running deviation 

Breakdown of production line 
Locating the roller where 

the deviation occurs 

Monitoring the strip 
tension 

Data Analytics 

Monitoring 
Model  

Diagnosis 
Model  

6. Data Analytics  
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Electric Natural Gas Oxygen Pulverized 
Coal 

Coal Gas 

    
                      

                    
  

En
ergy regen

eration 

Predictive Diagnostics 

Energy saving 

Analyze cause 

Identify bottleneck 

Analyze consumption 

Solution 

Benchmark 
Analysis 

Bottleneck 
Identification 

Energy  
Analysis 

Descriptive 

Obtain actual process data 

Complement  
the missing data 

Filter out  
exceptional data 

Energy consumption and regeneration data 

6. Data Analytics —— Energy analytics  



Conclusion and On-going Research 

Perception 

Analytics 

Optimization 

Steel/Nonferrous Petroleum-Chemical Mining/Logistics 

Plant-wide Production and Logistics Planning  

Production/Logistics Batching and Scheduling 

Intelligent Perception and Data Analytics for 
Cyber-physics System 

 

Energy 

Data 
Analytics 

First 
principle 

 Meta- 
heuristic 

Cyber-physics 

System 

Internet-of-Things-based IntelliSense 

Descriptive Diagnostics Predictive 

Production data 

Process Optimization and Optimal Control 

Logistics data Energy data Equipment data 

 Optimi- 
zation 
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Conclusion and On-going Research 

Data Analytics and Optimization 

Planning : Production and inventory 

Scheduling : Production with batching  

Process optimization :  Operations 

Descriptive : Production process 

Diagnostics : Equipment   

Predictive : Product quality 

Image : Recognizing  

Speech : Understanding  

VR/AR : Visualizing  

人工智能 
（AI） 

运筹优化 
（OR） 

 Process  
analytics  

System 
optimiza- 

tion 

     State  
perception 



  

Logistics, Resources 
Petrochemistry, Energy 

Steel Industry 

   Physical Background 

With No Physical Background 

Data Analytics 

dedicated to academ
y 

Refine 

rooted in industries 

Data Analytics 

Optimization  
 

Data Analytics and Optimization 

Conclusion and On-going Research 



Reporter : Lixin Tang 

Thank You ! 

Key Laboratory of Data Analytics and Optimization  
for Smart Industry (Northeastern University),  

Ministry of Education, China 

November  21  2019 
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