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Supply Chain: 
 
 
 
 
 
 
 
 

 Network of distant locations 

 Transportation cost plays critical role 

 Inventory availability is constraint by       
lead-times 

 Inventory replenishment is instantaneous 

Process Network: 
 
 
 
 
 
 
 
 

 Network of  complex integrated operations 

 Transportation is not critical 

 Inventory availability is constrained by 
production capacity 

 Continuous replenishment 

Motivation 
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A network with supply, 
processing, and demand 
nodes  

A discrete time horizon 

Probabilistic description of 
future supply, processing 
capacity, and demand  

Storage units 

Establishing production rates at processing units 

Determining location and amount of inventories 

Balancing average inventory levels and stockouts 

Inventory Optimization in Process Networks 

Given: 

Minimize 
cost by: 



Stochastic programming framework: 

 Find optimal actions 

 Optimize expected value 

For fixed actions (ut), the system 
evolves as a stochastic process: 

Conditions of the network are established by: 

 Available supply (St) 

 Production capacities (Ri,t) 

 Demand (Dt) 

 Stored inventories (xi) 

 
 

System dynamics:       𝑥𝑡+1 = 𝑥𝑡 + 𝑢𝑡 + 𝑑𝑡 

Scenario1 

Time 

Scenario2 
Scenario3 

Scenario 26 
Scenario 27 

Current state 

Possible 
future states 

Uncertain 

Decision and 
history dependent 
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Stochastic Decision Processes 

Future 
state 

Current 
state 

Actions Uncertainty 

But… 

 Continuous state-space 

 Arbitrary distribution of uncertain 
parameters (continuous, unbounded, 
autocorrelated, etc.) 

 Probability distribution of states (inventory 
levels) is unknown and endogenous 
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Discrete-time samples of independent random parameters 
during planning horizon (0,T): 

Available supply: St 

Production capacities: Ri,t 

Demand rates: Dt 

Sample-path Optimization 
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Sample path 1 
Sample path 2 
Sample path 3 
Sample path 4 

Sample path N-1 
Sample path N 

Sample 
S 

Sample 
D 

Sample 
R 

Solve multiperiod formulation 
with N sample paths 

Optimal  
base-stocks 

Optimal  
flows (∀𝑡 ∈ 𝑇) 

Calculate expected total cost 

Draw N sample paths (𝑆𝑛
𝑡 , 𝑅𝑛

𝑡 , 𝐷𝑛
𝑡) 

of length T 

Initial state of system (S0
, R

0
, D

0) 

Formulation approximates the optimal 
solution based on sample paths 

Each sample path is a deterministic 
trajectory of the uncertain parameters 
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Two-stage Approach 

min
𝑢𝑠,𝑡∈𝑈

𝔼
ω∈Ω

 𝑐𝑡𝑥ω,𝑡

𝑇

𝑡=0

 

 

𝑠. 𝑡. 𝑥ω,𝑡+1 = 𝑥ω,𝑡 + 𝑢ω,𝑡 + 𝑑ω,𝑡 ∀ 𝑡 ∈ 𝑇, ω ∈ 𝑆 
 

            𝑥ω,𝑡 ∈ 𝑋 

 Optimize directly over recourse actions 
(us,t) 

Decision-rule Approach 

min
𝑏𝑡∈𝐵

𝔼
ω∈Ω

 𝑐𝑡𝑥ω,𝑡

𝑇

𝑡=0

 

 

𝑠. 𝑡. 𝑥ω,𝑡+1 = 𝑥ω,𝑡 + 𝑢ω,𝑡 + 𝑑ω,𝑡 ∀ 𝑡 ∈ 𝑇, ω ∈ 𝑆 

            𝑢ω,𝑡 = 𝜋 𝑏𝑡,, 𝑥ω,𝑡  
 

           𝑥ω,𝑡 ∈ 𝑋 

 Optimize parameters (bt) of operating 
policy (π(bt,x ω,t)) 
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Inventory Management Strategies 

Base-stock policy: 
1. Use resources to satisfy demand 
2. Use resources to bring inventory to base-stock level (bt) 
3. Stop replenishing inventory at base-stock level (bt) 

Auxiliary processes: 

Throughput:  𝑝ω,𝑡 = 𝑚𝑖𝑛 𝑆ω,𝑡 , 𝑅ω,𝑡  

Underutilization: 𝑢ω,𝑡 =  
0 𝑖𝑓 𝑙 < 𝑏

𝑚𝑎𝑥 0, 𝑝ω,𝑡 − 𝐷ω,𝑡 𝑖𝑓 𝑙 = 𝑏
 

Stock-outs:           𝑠𝑜ω,𝑡 =  
0 𝑖𝑓 𝑙 > 0

𝑚𝑎𝑥 0, 𝐷ω,𝑡 − 𝑝ω,𝑡 𝑖𝑓 𝑙 = 0
 

Mass balance: 

𝑥ω,𝑡+1 − 𝑥ω,𝑡 = 𝑝ω,𝑡 − 𝑢ω,𝑡 − 𝐷ω,𝑡 − 𝑠𝑜ω,𝑡  

S D 

R x 

b 



 

Receding horizon: 

Simulate the sequential implementation of optimal first-stage decisions 
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Evaluating Inventory Planning Strategies 
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Plant 

Sample-path 
optimization 

xt 
xt+1 

ut 

Algorithm: 

1. Initial state (S0
, R

0
, D

0, cost0=0) 

2. Draw N sample paths of length T 

3. Solve sample-path optimization problem 

4. Accumulate first-stage cost 

5. End if the end of evaluation period is 
reached 
Else, update initial state and return to 2 

Repeat implementation of the algorithm to 
estimate mean and variance of results 



Process network with random supply, random demand, and unit 
failures described as a Markov process 

Cost coefficients: 

Inventory holding cost: ℎ1 = 5 / (ton-day) ℎ2 = 10 / (ton-day) 

Backorder cost: 𝑝𝑒𝑛 = $100 / ton-day 

U1 

U2 

Inv2 

U4 

Inv1 

U3 

S D 
F1 

F2 

F3 

F4 

F5 F7 

F6 

F9 

F8 

F11 
1 2 
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F10 

Example 

Data U1 U2 U3 U4 

Failure rate [1/day]: 0.011 0.021 0.017 0.030 

Repair rate [1/day]: 0.200 0.200 0.200 0.200 

Probability of operation: 𝜋1 = 0.95 𝜋2 = 0.95 𝜋3 = 0.92 𝜋4 = 0.87 

Mass balance coefficients: 𝛼1 = 0.92 𝛼2 = 0.90 𝛼3 = 0.85 𝛼4 = 0.75 

Processing capacity: 𝑅1 = 5 𝑅2 = 5 𝑅3 = 7 𝑅4 = 9 

Resource priorities 
in multiechelon 
base-stock policy:  

1. Demand 
2. Inventory 1 
3. Inventory 2 
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Parameters of closed-loop simulations: 
 25 sample paths in each optimization problem 
 Evaluate over horizon of 20 time periods 
 40 repetitions 
 Planning horizons from 1 to 5 time periods 

No inventories: no inventory planning 

Two-stage: solves stochastic 
formulation with sample paths using 
two-stage stochastic programming 

Decision rule: solves stochastic 
formulation with sample paths using 
multiechelon inventory policy 

Perfect Info: deterministic problem 
for the realizations in the horizon 

Example 

Longer planning horizons yield better inventory management strategies 

Decision rule approach yields lower cost because it considers the 
distribution of uncertain parameters for decisions of all time periods 
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Novelty: 

 Approach for inventory planning in industrial networks  

 Arbitrary distributions for the uncertain parameters 

 Inventory policies are used as decision rules in sample-path 
optimization 

Impact for industrial applications: 

 Historical data and forecasts can be used for investment planning 

 Cost reductions achieved through optimization 

 Solutions are easy to implement in practice 
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Analysis 


