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Background and Motivation Product
LLDPE Solution Polymerization!
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* Made by copolymerization of ethylene with longer-
chain olefins (octene, butene, hexene, propylene) Heat |
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*  Continuous operation with multiple feed positions - Catalyst inlet
Current Practice }
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» Different grades produced in a single production line A Mlonomer
and grade transition takes a long time Flow inlet
loop .
* Hard to implement complex transitions é
*  Room for improvement | Heat
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Objectives 8
Develop a model based control and optimization framework
to minimize transition time and offgrade products \
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1. Che | Kao et al. Non-adiabatic olefin solution polymerization, November 2 1999. US Patent 5,977, 25
2. ).J. Zacca and W.H. Ray. Modelling of the liquid phase polymerization of olefins in loop reactors.
Chemical Engineering Science, 48(22):3743-3765, 1993.
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Project Progress

Model Development and Offline Optimization
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Model Development
e CSTR with data-driven surrogate VLE model
e Method of moments for product property prediction
e Variable time delay for recycle streams
* Process constraints

Offline Dynamic Optimization
e Single stage optimization (single value target)
e Multistage optimization (specification bands) 3




To Lower Density and Higher Ml
Comparison of Ml Profile
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Methodology Optimization w/
Concept of backoff Nominal Uncertainty
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Original constraints l,OptimaI input profiles
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Data Processing
Approximate backoff b,

Monte Carlo simulation to l,Backoff b,
approximate b,

* Assume the uncertainty p is in a range
around its nominal value and it follows

normal distribution N(po, o) “Robust” optimal input profiles
e Assume 5% of pg is within 30

Optimization w/
Backoff constraints

Data Processing

e m=200 in the following case study ek s pErETEeE

4. Srinivasan, B., Bonvin, D., Visser, E., & Palanki, S. (2003). Dynamic optimization of batch processes: Il. Role of measurements in
handling uncertainty. Computers & Chemical Engineering, 27(1), 27-44. 5
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Case study
Approximate backoff b,
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Case study
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Significance

Developed a rigorous dynamic model for the process
e Built and integrated a surrogate VLE model

* Predicts accurately with reduced model complexity

Single-stage formulation vs. multistage formulation
* Takes specification bands into account
*  Minimizes transition time and off-grade product directly

* Greatly reduces the transition time and the off-grade production

Robust optimization using backoff constraints
* Computationally tractable optimization with time-varying backoffs

* Robust transition policies




Potential Value and Future Work

Potential Value

* Reduction of transition time and off-grade product
e Guided complex transitions

* Increased flexibility in production wheel

* Robust offline transition policies

Future Work
* Improve the performance by tuning parameters and refining the model
* Apply adjoint sensitivity formulation for optimization under uncertainties

* Consider online optimization and model predictive control

Thanks for your attention!
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