

Robust Optimization for Grade Transitions In Polyethylene Solution Polymerization

Jun Shi¹, Lorenz T. Biegler¹

Intan Hamdan², Sarat Munjal², John Wassick², Scott Bury², Shawn Feist², Alex Kalos²

¹Center of Advanced Process Decision-making Department of Chemical Engineering Carnegie Mellon University

²The Dow Chemical Company

2015 EWO Meeting

Background and Motivation LLDPE Solution Polymerization¹

- Linear low-density polyethylene (LLDPE)
- Made by copolymerization of ethylene with longerchain olefins (octene, butene, hexene, propylene) Heat
- Long loop with heat exchangers
- Continuous operation with multiple feed positions

Current Practice

- Different grades produced in a single production line and grade transition takes a long time
- Hard to implement complex transitions
- Room for improvement

Objectives

Develop a model based control and optimization framework to minimize **transition time** and **offgrade products**

- 1. Che I Kao et al. Non-adiabatic olefin solution polymerization, November 2 1999. US Patent 5,977,25
- 2. J.J. Zacca and W.H. Ray. Modelling of the liquid phase polymerization of olefins in loop reactors. Chemical Engineering Science, 48(22):3743–3765, 1993.

Project Progress Model Development and Offline Optimization

Model Development

- CSTR with *data-driven surrogate VLE model*
- *Method of moments* for product property prediction
- Variable time delay for recycle streams
- Process constraints

Offline Dynamic Optimization

- Single stage optimization (single value target)
- *Multistage* optimization (specification bands)

To Lower Density and Higher MI Comparison of MI Profile

Methodology Concept of backoff

Original constraints $f(x, u, p) \le 0$ Updated inequality constraints $f(x, u, \bar{p}) + b_c \le 0$ Nominal value

Monte Carlo simulation to approximate b_c

- Assume the uncertainty p is in a range around its nominal value and it follows normal distribution $N(p_0, \sigma^2)$
- Assume 5% of p_0 is within 3σ
- *m*=200 in the following case study

4. Srinivasan, B., Bonvin, D., Visser, E., & Palanki, S. (2003). Dynamic optimization of batch processes: II. Role of measurements in handling uncertainty. *Computers & Chemical Engineering*, 27(1), 27-44.

Case study Nomie al apprisonal Satisfication

Case study Approximate backoff b_c

Case study **Pertionization with backefisainty**

Significance

Developed a rigorous dynamic model for the process

- Built and integrated a surrogate VLE model
- Predicts accurately with reduced model complexity

Single-stage formulation vs. multistage formulation

- Takes specification bands into account
- Minimizes transition time and off-grade product directly
- Greatly reduces the transition time and the off-grade production

Robust optimization using backoff constraints

- Computationally tractable optimization with time-varying backoffs
- Robust transition policies

Potential Value and Future Work

Potential Value

- Reduction of transition time and off-grade product
- Guided complex transitions
- Increased **flexibility** in production wheel
- Robust offline transition policies

Future Work

- Improve the performance by tuning parameters and refining the model
- Apply **adjoint sensitivity formulation** for optimization under uncertainties
- Consider **online** optimization and model predictive control

Thanks for your attention!