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Background and Motivation 
LLDPE Solution Polymerization1 

• Linear low-density polyethylene (LLDPE) 

• Made by copolymerization of ethylene with longer-
chain olefins (octene, butene, hexene, propylene)  

• Long loop with heat exchangers 

• Continuous operation with multiple feed positions 

Current Practice 

• Different grades produced in a single production line 
and grade transition takes a long time 

• Hard to implement complex transitions 

• Room for improvement 

Objectives 

Develop a model based control and optimization framework 
to minimize transition time and offgrade products 

2 
1. Che I Kao et al. Non-adiabatic olefin solution polymerization, November 2 1999. US Patent 5,977,251. 
2. J.J. Zacca and W.H. Ray. Modelling of the liquid phase polymerization of olefins in loop reactors.  
     Chemical Engineering Science, 48(22):3743–3765, 1993. 



Project Progress 
Model Development and Offline Optimization 
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Model Development 
• CSTR with data-driven surrogate VLE model 
• Method of moments for product property prediction 
• Variable time delay for recycle streams 
• Process constraints 

Offline Dynamic Optimization 
• Single stage optimization (single value target) 
• Multistage optimization (specification bands) 



To Lower Density and Higher MI 
Comparison of MI Profile 

MI: 1 12 g/10min 
Multistage  
• Capable of minimizing the 

transition time and the off-
grade product directly 

• Faster transition in S2 reduces 
the transition time 

• Oscillations within the band 
• More than 50% reduction 
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baseline
single-stage
multi-stage

 in min Transition Time  Duration of S2 

Baseline 82.8 77.4 

Single-stage 51.0 45.6 

Multistage 39.1 33.6 
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unknown uncertainty level
multi-stage at nominal value

Optimal solution fails at unknown 
uncertainty level! 



Methodology 
Concept of backoff 
Original constraints 

𝑓𝑓 𝑥𝑥,𝑢𝑢,𝑝𝑝 ≤ 0 
Updated inequality constraints  

𝑓𝑓 𝑥𝑥,𝑢𝑢, �̅�𝑝 + 𝑏𝑏𝑐𝑐 ≤ 0 
 
 
Monte Carlo simulation to 
approximate 𝒃𝒃𝒄𝒄 
• Assume the uncertainty 𝑝𝑝 is in a range 

around its nominal value and it follows 
normal distribution N 𝑝𝑝0,𝜎𝜎2  

• Assume 5% of 𝑝𝑝0 is within 3𝜎𝜎 
• 𝑚𝑚=200 in the following case study 

 
 

Nominal value 

5 4. Srinivasan, B., Bonvin, D., Visser, E., & Palanki, S. (2003). Dynamic optimization of batch processes: II. Role of measurements in 
handling uncertainty. Computers & Chemical Engineering, 27(1), 27-44. 

𝑏𝑏𝑐𝑐 ≥ 0 backoffs required for 
constraint satisfaction in the 
presence of uncertainty 

Optimization w/  
Nominal Uncertainty 

Level 

Monte Carlo  
simulation 

Optimal input profiles 

Data Processing 
Approximate backoff 𝑏𝑏𝑐𝑐  

State and output profiles 

Backoff 𝑏𝑏𝑐𝑐 

Optimization w/ 
Backoff constraints 

Data Processing 
Check the performance  

“Robust” optimal input profiles 



Case study 
Nominal Optimal Solution 

Optimization w/  
Nominal Uncertainty 

Level 

Monte Carlo  
simulation 

Optimal input profiles 

Data Processing 
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Optimization w/ 
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“Robust” optimal input profiles 
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Case study 
Monte Carlo simulation 

Optimization w/  
Nominal Uncertainty 

Level 

Monte Carlo  
simulation 

Optimal input profiles 

Data Processing 
Approximate backoff 𝑏𝑏𝑐𝑐  

Resulting state and output profiles 

Backoff 𝑏𝑏𝑐𝑐 

Optimization w/ 
Backoff constraints 

Data Processing 
Check the performance   

“Robust” optimal input profiles 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0.91
Density (200 runs)

time (hr)

de
ns

ity
 (g

/c
c)

Transition time longer than 
2.7 hrs for the majority 
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Case study 
Approximate backoff 𝒃𝒃𝒄𝒄 

Optimization w/  
Nominal Uncertainty 

Level 

Monte Carlo  
simulation 

Optimal input profiles 

Data Processing 
Approximate backoff 𝑏𝑏𝑐𝑐  

Resulting state and output profiles 

Backoff 𝑏𝑏𝑐𝑐 

Optimization w/ 
Backoff constraints 

Data Processing 
Check the performance   

“Robust” optimal input profiles 

• Obtain standard deviation 𝜎𝜎 
 
 
 
 
 
 
 
 
 
 

• Add backoff constraints (2.9𝜎𝜎) in the original 
optimization problem 
 

Max standard 
deviation 

Melt Index 0.61 

Density 0.0002 

Production rate 14.21 

Reactor temp. 0.29 

Ethylene conc. 0.01 

Pb in reactor 0.02 
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Violation observed in the worst case 
 Characteristic  of normal distribution 
 Approximation of backoff 2.9𝜎𝜎 
Error propagates over time 
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Case study 
Optimization with backoffs 

Optimization w/  
Nominal Uncertainty 

Level 

Monte Carlo  
simulation 

Optimal input profiles 

Data Processing 
Approximate backoff 𝑏𝑏𝑐𝑐  

Resulting state and output profiles 

Backoff 𝑏𝑏𝑠𝑠 

Optimization w/ 
Backoff constraints 

Data Processing 
Check the performance   

“Robust” optimal input profiles 
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 in min Transition Time  Duration of S2 

Multistage w/o backoffs 39.1 33.6 

Multistage w/ time-varying backoffs 40.2 34.8 

Case study 
Performance under uncertainty 

Optimization w/  
Nominal Uncertainty 
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Optimization w/ 
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“Robust” optimal input profiles 
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1. Oscillations within the band 
2. Better control the propagation error 



Significance 
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Developed a rigorous dynamic model for the process 
• Built and integrated a surrogate VLE model 
• Predicts accurately with reduced model complexity 
 
Single-stage formulation vs. multistage formulation 
• Takes specification bands into account  
• Minimizes transition time and off-grade product directly  
• Greatly reduces the transition time and the off-grade production 

 
Robust optimization using backoff constraints 
• Computationally tractable optimization with time-varying backoffs 
• Robust transition policies 

 
 
 
 

 



Potential Value and Future Work 
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Potential Value 

• Reduction of transition time and off-grade product 
• Guided complex transitions  
• Increased flexibility in production wheel   
• Robust offline transition policies 

 
Future Work 
• Improve the performance by tuning parameters and refining the model 
• Apply adjoint sensitivity formulation for optimization under uncertainties 
• Consider online optimization and model predictive control  

 

 
 
 

 

Thanks for your attention! 
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