

Inventory Optimization for Industrial Network Flexibility

P. Garcia-Herreros, B. Sharda, A. Agarwal, J.M. Wassick & I.E. Grossmann

EWO Meeting March, 2014

Motivation

Process networks describe the operation of chemical plants

Inventories are necessary because of process uncertainty:

- Raw material storage tanks hedge against supply variability
- Intermediate storage tanks hedge against production rates variability
- Finished product inventories hedge against demand variability

Holding inventory is expensive!

Need to trade-off between inventory and stock-out cost

Problem Statement

Given:

- A process network with continuous processing units
- Uncertain supply, processing rates, and demand with known probabilistic description
- Candidate locations for storage units

Find optimal trade-off between inventory cost and service level by:

• Determine at which stages of the process to hold inventory

Modeling Inventories in Process Networks

Operating policies in discrete-event simulation:

Rules to establish when inventories are depleted, replenished, and their priorities

In every time-period during a time-horizon (0, T):

- 1. Satisfy demands (*D*) according to priorities using available supply (*S*) and production capacities (*R*)
- Update D, S, R_1, R_2 , and R_3

- Update D, S, R_1 , R_2 , R_3 , I_1 , and I_2
- 3. Replenish inventories according to priorities using left over supply (*S*) and production capacities (*R*)

Update S, R_1 , R_2 , R_3 , I_1 , and I_2

- 4. Stop inventory replenishments at base-stock levels (*B*)
- 5. Repeat for next time-period

Inventory decisions connect the state of consecutive time-periods

Sequential Decision-making

Modeling decisions without foreseeing the future

- **Policy:** rules to determine decisions as functions of the state of the system
- Decisions rules do not change as the information reveals
- Optimal policy
- **Optimal decisions**

Decision rules

Optimal objective value

Anticipativity issues in inventory management

Inventories might be accumulated anticipating adverse realizations of random parameters:

- Use raw material inventories to anticipate price increases that have not been revealed
- Make-to-stock products anticipating unexpected increases in demand that will be realized

Capacity constraints

- Operating policies (logic)
 Storage
- Bounds: Base-stock levels $(B_i \ge 0)$ Flows $(F_j \ge 0)$

Solution Strategy

Challenges:

- Inventory levels depend on the history of random parameters
- Arbitrary distributions for uncertain parameters

Solution strategy: Sample-path optimization

Discrete-time samples of random parameters in a time-interval (0,T):

- Available supply: S_t
- Maximum processing rates: *R*_t
- Demand rates: D_t

For **long time-horizons**, the solution is a **good estimate** of the optimal solution

Illustrative Example

Process network with failures (no storage):

(Straub & Grossmann, 1990)

Data

Supply: $S \sim N(12,1)$ ton/day	Demand: $D \sim N(7,1)$ ton/day			
Probability of operation:	$\pi_1 = 0.95$	$\pi_{2} = 0.95$	$\pi_{3} = 0.92$	$\pi_4 = 0.87$
Mass balance coefficients:	$\alpha_1 = 0.92$	$\alpha_{2} = 0.90$	$\alpha_{3} = 0.85$	$\alpha_4 = 0.75$
Processing capacity:	$R_1 = 5$	$R_2 = 5$	$R_3 = 7$	$R_4 = 9$

Probability of satisfying demand

Expected stochastic flexibility:

Illustrative Example

Process network with failures

Cost coefficients:					
Production costs:	$\mu_1 = 0$	$\mu_2 = 0$	$\mu_3 = 0$	$\mu_4 = 0$	
Inventory holding cost:	$h_1 = 5 / (ton-day)$		$h_2 = 10 / (ton-day)$		
Penalty for unmet demand:	<i>p</i> = \$25	/ ton			

Optimal results on 25,000 time-periods

	Base-stock 1	Base-stock 2	Exp. holding cost	Exp. penalty cost	Exp. total cost	Exp. Stoch. flexibility
No storage	0	0	\$0/day	\$ 7.25 / day	\$ 7.25 / day	0.81
Storage	7.04	7.60	\$ 2.81 / day	\$ 1.25 / day	\$ 4.06 / day	0.97

Expected flexibility **increases** from 0.81 to 0.97

Conclusions

Novelty:

- Specialized approach for inventory management in process networks
- Arbitrary distributions for the uncertain parameters
- Discrete-event simulation principles in an optimization framework
- Operating policies are modeled with logic constraints

Impact for industrial applications:

- Historical data can be used directly for inventory optimization
- Cost reductions can be achieved by implementing optimal strategies for inventory management in process networks
- Process resilience can be improved with the addition of intermediate storage units