Long-term Turnaround Planning for Integrated Chemical Sites

Satya Amaran, Tong Zhang, Nick Sahinidis (CMU)
Bikram Sharda, Matt Morrison, Scott Bury, Scott Miller, John Wassick
(The Dow Chemical Company)
Problem Statement

- Exploit network interactions, storage availability, and prices to schedule maintenance over a multi-year horizon

- Scope:
 - Max. profit
 - Continuous processes
 - Time horizon: 5-15 years
 - Site-wide (each unit is an entire plant)
Mixed Integer Linear Programming Model

• **Objective: Max. profit**

 Revenue from sold product – maintenance costs – holding costs – demand satisfaction penalties – cost of raw materials and imports

• **Constraints**

 – Network flow constraints
 • Inventory and mass balance
 • Nonnegativity constraints
 • Upper and lower bounds on inventory levels
 • Demands
 • Financial-manpower-turnaround constraints
Novelty

- Incorporation of three major concerns:
 - Avoidance of maintenance tasks in unfavorable conditions
 - Bringing down peak manpower requirements
 - Balancing quarterly financial performance
Potential Impact

• Successfully demonstrated
 – Turnaround optimization for an industrial-size network
 – Efficient solution while retaining key model features
 – Incorporation of practical considerations

• Future/current work
 – Medium-term turnaround scheduling under duration uncertainty for manpower and production planning (robust + stochastic approach)