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Design of reliable process networks takes random process 
failures into consideration

Photograph of Ras Tanura Refinery from www.arabianoilandgas.com/pictures/gallery 

(1)

• Chemical plants are networks of processes

• All processes in real plants are subject to stochastic (random) 
failures

• The network has to be designed so that failures do not propagate
(think about bullwhip effect in a supply chain).
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Design of reliable process networks takes random process 
failures into consideration
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• Each individual process has an availability of 
97% (percent of time the process is functional)

• Random failure in any of the three plants forces 
all plants to stop

Without intermediate storage
or redundant parallel units 
the network is NOT functional 
~ 10% of the time 

Process Network
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Objective: determine number and size of redundant units 
and storage tanks needed for reliable operation

Process 1A

B

E

Process 2

Process 3

Storage tanks
Reliable process Network

Process 3

Redundant units

+ Reliability
+ Capital investment

Challenges involved in designing reliable process networks:

• How much investment is required to ensure certain reliability ?
• How to invest a given amount of capital in the best possible way ?

– Redundancies vs. storage tanks
– There are 27 combinations of redundancies and storage tank configurations in the  

simple network above
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Mathematical optimization provides a systematic method 
for achieving the objective of reliable design

Given: 
The superstructure of an integrated site 
Process specifications (maximum allowable capacities, supply of raw 
material, etc.)
Number of failure modes and their corresponding probability

Determine:
The number of parallel production units for each process.
Sizes of intermediate storage between processes.

With the objective of:
Maximizing the average production rate (function of reliability)
Minimizing the capital investment.
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Mathematical optimization provides a systematic method 
for achieving the objective of reliable design
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The uncertainty in process failures leads to a stochastic 
programming (SP) formulation  

The network is subject to failures; in each failure scenario the model of the network (mass 
balance, superstructure constraints, etc.) has a different solution, i.e.:
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Process 2b

Failure 1b

Failure 2b

Scenario 1 (s = 1) Scenario 2 (s = 2)

Flows in the network, f s=1 are different in 
scenario 1… … than in scenario 2, f s=2 .
The mass balance equations in the model are repeated for each scenario:

0),,,( sss vyfm 
Compact representation of the 
equations in the model for each 
scenario
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The uncertainty in process failures leads to a stochastic 
programming (SP) formulation  
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Two-stage stochastic programming formulation

• ps: probability of each scenario
• fE: flow of finished product

• Flow variables f s are assigned to 
each scenario 

• Design variables y,v, are not a 
function of the scenario

• Objective function represents the average productivity 

• We want to determine the design that maximizes the average productivity

• One scenario for each combination 
of failure modes in the 
superstructure
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Modeling endogenous uncertainties in the SP formulation 
requires non-anticipativity (NA) constraints

We still need more constraints…
Scenarios 1 and 2 are indistinguishable IF Process 1b, 2b, and 3b are not chosen from 
the superstructure
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21   ss ff
IF 0,, 321 bbb yyy • Equation for each possible pair of scenario

• Equation is activated or deactivated as a 
function y

• These are Non-anticipativity constraints
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Modeling endogenous uncertainties in the SP formulation 
requires non-anticipativity (NA) constraints
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Remarks about formulation

• Optimizes the average 
performance of network

• The probability of each scenario is 
affected by the design decisions: 
endogenous uncertainty.

• To model endogenous uncertainty 
we need non-anticipativity (NA)
constraints

• Solve for different values of to 
obtain Pareto-optimal solutions
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The number of NA constraints turns most industrial 
applications into large-scale optimization problems

• Number of scenarios as a function of possible failures in the network:

• Number of non-anticipativity constraints required 
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Largest Mixed-integer
(continuous and discrete 
variables) problems can 
involve a few million 
constraints
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For a superstructure with two parallel redundant units we have 4 scenarios:

and two NA constraints*

We propose an algorithm based on Benders decomposition to 
reduce the number of NA constraints

Basic idea: If design variables are fixed there is NO need for NA constraints
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But if the designed is fixed we need only construct the scenarios relevant for the 
process installed

and we don’t need NA constraints

We propose an algorithm based on Benders decomposition to 
reduce the number of NA constraints

Basic idea: If design variables are fixed there is NO need for NA constraints

Process a

Process A
Functional

Failure

Scenario
1
2

Fewer scenarios, no NA constraints:
Problem smaller by orders of magnitude
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1. Fix design variables y,v

2. Construct only the scenarios relevant for the processes included in the design

3. Optimize the network for the given design

4. Use a different trial value for y and v

We propose an algorithm based on Benders decomposition to 
reduce the number of NA constraints

Proposed algorithm:

Add dual cut between steps 3. 
and 4.

The resulting algorithm is equivalent to 
Benders Decomposition 
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The dual cut is 
derived in   

but must be 
valid in 

SubproblemS

Our contribution is to allow the solution of the Benders 
sub-problem in a reduced space
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An industrial case study illustrates the impact of using the 
proposed algorithm (1/2)
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Case study provided by Dow

• Real integrated process called a product “envelope”

• 1000 failure scenarios were included in the problem formulation

• Work station (2G RAM) is not able to generate the model in GAMS
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An industrial case study illustrates the impact of using 
the proposed algorithm (2/2)

• Problem cannot be solved in workstation (2G RAM) due to insufficient memory

• A complete Pareto front for 10 values of available capital for investing (problem solved 
10 times) can be generated in less than 6 hrs

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

0 50,000 100,000 150,000 200,000 250,000 300,000

k$

m
as

s/
ho

ur

Capital investment

N
et

w
or

k 
pr

od
uc

tiv
ity



17

• Dow provided us with a simulation model that has been validated internally as an 
adequate representation of the real system

• We use this simulation to test the optimal designs found by the two-stage stochastic 
simulation

We validated the design obtained using the proposed 
decomposition technique
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• Results of simulation validate the accuracy of the optimization model
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Summary and next steps

• We formulated the design of reliable process networks under 
uncertainty as a two-stage stochastic program with endogenous 
uncertainties

• This a powerful representation that can be used to model a variety of 
problems that arise in industrial practice

• We proposed an algorithm to partly overcome the computational 
burden associated with this type of formulation

• We successfully applied this algorithm to the bi-criterion 
optimization of an industrial case study 

• Next steps involve extending the modeling framework and solution
methodology to batch and discrete manufacturing processes in 
multiproduct process networks


