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Vehicle Routing Problem (VRP)

=  Given a set of customers, determine minimum cost vehicle routes
such that all customer orders are satisfied

— Fleet typically assumed to be composed of identical vehicles
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Heterogeneous Fixed Fleet VRP

" |n practice, real-world fleets are very often composed of
heterogeneous vehicles with different capacities and routing costs
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Fleet Sizing and Mix VRP

= Deciding an optimal fleet composition and size cannot be made

agnostically of vehicle routing
=l _
D

= @Given
— Customer set I/ with demands g;
— Vehicle types k =1, ...,m

— Capacity 0y, availability m,, fixed cost F;, of type k
(F}, could model rental/capital amortization costs)

— Routing cost c{‘j between every pair of nodes (i,j) € E p
-0

= Determine a set of routes for each vehicle such that

— Each customeris visited exactly once ; ]
( ()

— No more than m,, vehicles of type k are used ()
— Sum of routing and fixed costs is minimized

g%“@g
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Broad Class of Heterogeneous VRPs

= Other real-world distribution problems can also be modeled as
Heterogeneous VRPs (Baldacci et. al., Ann. Oper. Res., 2010)

VRP Variant Fleet Size Fixed Costs Routing Costs
Heterogeneous Fleet Limited Not considered Vehicle-dependent
Site Dependent Limited Not considered Site-dependent
Fleet Size and Mix Unlimited Considered Independent
Multi-depot Unlimited Not considered Depot-dependent

= None of the existing approaches account for uncertainty in
available information

= Current state-of-the-art is based on a set partitioning approach
— Not straightforward to incorporate uncertainty in this approach
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New “Undirected” Formulation |

. y{‘ € {0,1} denotes if customer i is assigned to a vehicle of type k
. x{j € {0,1} denotes if edge (i, j) is traveled by a vehicle of type k
— O(n?M) binary variables and O(2") constraints

minimize E ( E c,,;j:vfjJrFkE Th
.y
(

k i.j)EE icVe
subject to Z T + Z T = 2yF VieVe, VEk
7EV
Degrees o0 j<i
ngj: Z:ran < myp YV k
JEVD JeEV
Assignment ny =1 VieVy
k
iminati > al > VveS VS CVe, Vi
Subtour elimination Tij 2 2Yy ; C Ve,
(i.4)€5(S)
“Generalized” RCI b +2) (1—yf) =2 {Q qu VS C Ve, Vk
(i,7)€8(S) icS kies
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New “Undirected” Formulation Il

= Define extended graph (V',E"), where V' =V u{n+1,..,n+
m}
Each customer is connected to m additional destination depots
— Costof edges (i,n + k) is ¢ ;1) = Cjo + Fy

— Other edges have same cost cl-j = Cjj

. y{‘ € |0,1] denotes if customer i is assigned to a vehicle of type k
= x;; €{0,1} denotes if edge (i, ) is used

— O(n? + nM) binary variables, O(nM) continuous variables and
O(2™) constraints

= This model uses aggregated variables and, hence,...
...i1s of smaller size than Formulation |
...has weaker LP relaxationthan Formulation |
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New “Undirected” Formulation Il

minimize E Cii T4
Y
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Demand Uncertainty

" |n practice, customer demands are often not known with certainty

— Deterministic routing plan can become infeasible or too expensive

— Importance is amplified for Fleet Sizing and Mix problems:
not accounting for uncertainty can lead to high rental/capital costs

= QObjective is to design minimum cost routing plan that remains
feasible for all demand realizations within the “uncertainty set”

Q={qeR!:Wq<h}

= Practically-meaningful uncertainty sets:
Inclusion-constrained budgets Beta-net-alpha factor model

QB—{qe lq,4] :Zqigbl, Vl—l,...,L} Qr={qeq.q:Fc=:q=q"+d}
i€B,

Bngt’ or Blngl or BgﬂBy:@ \V/ljl’ WhCrCE_{£E —1 1] Z§f|<ﬁF}
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Robust Counterpart

= All constraints remain exactly the same except “Generalized” RCI

(F1) ) af+2) (1—yf) >2{kaf4 VSCVe, VEVgeQ

(4,7)€0(S) €S €S

= Reformulated to obtain (similar for Formulation 2)
Robust Generalized RCI cuts:

(F1) ) af+2) (1—yf) >2{

(7,7)€0(S) €S

Qk acQ

Illd}xqu-‘ VS CVe, VE

= Can obtain closed-form solutions of 13;25(2 % for inclusion-constrained
budgets and beta-net-alpha factor models (Gounaris et. al., Oper.
Res., 2013)

— Can be used efficiently in a separation routine for Robust Generalized
RCl cuts
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Separation of Valid Robust Inequalities

=  Generalized RCI cuts separated using Tabu Search metaheuristic

— Construct an initial set S € V- using a greedy heuristic
— Update S incrementally to maximize violation

— Incremental steps require repeated calculation of %1352% which is
. . . €S
immediate because of closed-form solutions

= Generalized FCI cuts (not necessary, but strengthen linear relaxation)

(F1) Z ok Z% kY SCVo, VEkVge O
(i,7)€8(S €S

(F2) 3 %ZQZZ Gk VSCVo,ViVgeQ
(7,7)€8(S 165

— For a given extreme point g of Q, find maximally violated FCI S c Ve by
solving an appropriate max-flow problem (polynomial time)

— Solve an LP over Q with fixed S to get q € Q whose FCl is most violated
— Store in memory the generated extreme points for future separation
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Conclusions and Future Work

We developed two new deterministic MILP models for a broad class
of industrially-relevant Heterogeneous VRPs

— Generalized the classical RCl and FCI cuts

We have developed Robust Counterparts of these models which
have the same size as the original models.

We developed efficient separation procedures for the Robust
Generalized RCI cuts and Robust Generalized FCI cuts

Future work:
— Improve the strength of the aggregated formulation
— Better RCl-like cuts for the deterministic and robust models
— Explore cross-vehicle decomposition techniques
— Apply models to a Dow case study



