

Vehicle Routing with Heterogeneous Fleets and Uncertain Demands

Anirudh Subramanyam, Chrysanthos E. Gounaris Carnegie Mellon University

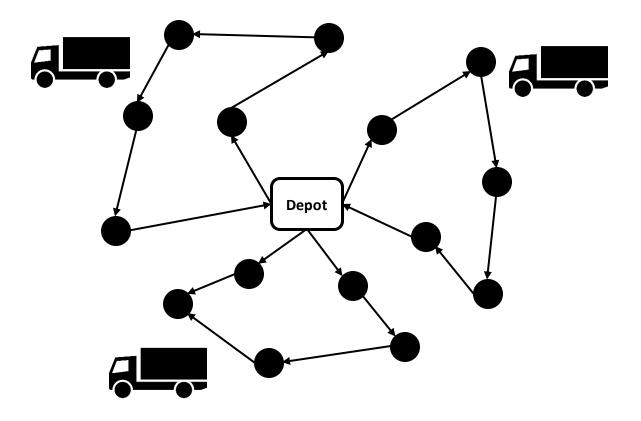
Laercio Oliveira, John Wassick

The Dow Chemical Company

EWO Meeting September 30th – October 1st, 2015

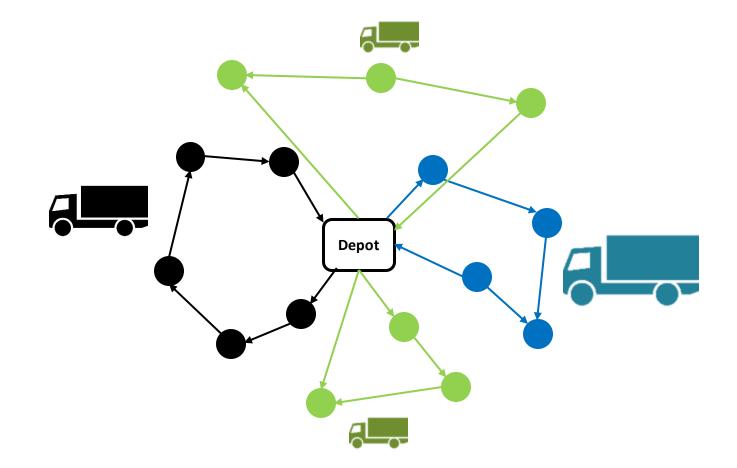
Vehicle Routing Problem (VRP)

- Given a set of customers, determine minimum cost vehicle routes such that all customer orders are satisfied
 - Fleet typically assumed to be composed of identical vehicles



Heterogeneous Fixed Fleet VRP

 In practice, real-world fleets are very often composed of heterogeneous vehicles with different capacities and routing costs



Fleet Sizing and Mix VRP

- Deciding an optimal fleet composition and size cannot be made agnostically of vehicle routing
- Given

CET Carnegie Mellon

- Customer set V_C with demands q_i
- Vehicle types k = 1, ..., m
- Capacity Q_k , availability m_k , fixed cost F_k of type k (F_k could model rental/capital amortization costs)
- Routing cost c_{ij}^k between every pair of nodes $(i, j) \in E$
- **Determine** a set of routes for each vehicle such that
 - Each customer is visited exactly once
 - No more than m_k vehicles of type k are used
 - Sum of routing and fixed costs is minimized

Broad Class of Heterogeneous VRPs

 Other real-world distribution problems can also be modeled as Heterogeneous VRPs (Baldacci et. al., Ann. Oper. Res., 2010)

VRP Variant	Fleet Size	Fixed Costs	Routing Costs
Heterogeneous Fleet	Limited	Not considered	Vehicle-dependent
Site Dependent	Limited	Not considered	Site-dependent
Fleet Size and Mix	Unlimited	Considered	Independent
Multi-depot	Unlimited	Not considered	Depot-dependent

- None of the existing approaches account for uncertainty in available information
- Current state-of-the-art is based on a set partitioning approach
 - Not straightforward to incorporate uncertainty in this approach

New "Undirected" Formulation I

- $y_i^k \in \{0,1\}$ denotes if customer *i* is assigned to a vehicle of type *k*
- $x_{ij}^k \in \{0,1\}$ denotes if edge (i, j) is traveled by a vehicle of type k
 - $\mathcal{O}(n^2 M)$ binary variables and $\mathcal{O}(2^n)$ constraints

$\underset{x,y}{\operatorname{minimize}}$	$\sum_{k} \left(\sum_{(i,j)\in E} c_{ij} x_{ij}^k + F_k \sum_{i\in V_C} x_{0i}^k \right)$	
subject to	$\sum x_{ij}^k + \sum x_{ji}^k = 2y_i^k$	$\forall i \in V_C, \forall k$
Degrees	$\begin{array}{ll} j \in V : & j \in V : \\ j > i & j < i \end{array}$	
	$\sum_{j \in V_C} x_{0j}^k = \sum_{j \in V_C} x_{j,n+1}^k \le m_k$	$\forall \ k$
Assignment	$\sum_{k} y_i^k = 1$	$\forall i \in V_C$
Subtour elimination	$\sum_{(i,j)\in\delta(S)} x_{ij}^k \ge 2y_v^k$	$\forall v \in S, \forall S \subseteq V_C, \forall k$
"Generalized" RCI	$\sum_{(i,j)\in\delta(S)} x_{ij}^k + 2\sum_{i\in S} \left(1 - y_i^k\right) \ge 2\left\lceil \frac{1}{Q_k} \sum_{i\in S} q_i \right\rceil$	$\forall \ S \subseteq V_C, \ \forall \ k$

New "Undirected" Formulation II

• Define extended graph (V', E'), where $V' = V \cup \{n + 1, ..., n + m\}$

Each customer is connected to m additional destination depots

- Cost of edges (i, n + k) is $c'_{i,n+k} = c_{i0} + F_k$
- Other edges have same cost $c'_{ij} = c_{ij}$
- $y_i^k \in [0,1]$ denotes if customer *i* is assigned to a vehicle of type *k*
- $x_{ij} \in \{0,1\}$ denotes if edge (i, j) is used
 - $O(n^2 + nM)$ binary variables, O(nM) continuous variables and $O(2^n)$ constraints
- This model uses aggregated variables and, hence,...

... is of smaller size than Formulation I

...has weaker LP relaxation than Formulation I

New "Undirected" Formulation II

$$\begin{split} \underset{x,y}{\text{minimize}} & \sum_{(i,j)\in E'} c'_{ij}x_{ij} \\ & \text{subjec} \quad \text{to} \quad \sum_{j\in V_C} x_{0j} = \sum_k \sum_{j\in V_C} x_{j,n+k} \\ & \sum_{j\in V':} x_{ij} + \sum_{j\in V':} x_{ji} = 2 \\ & \sum_{j\in V':} x_{ij} + \sum_{j\in V':} x_{ji} = 2 \\ & \text{Fleet Availability} \longrightarrow \sum_{j\in V_C} x_{j,n+k} \leq m_k \\ & \forall k \\ \\ & \text{Subtour elimination} \quad \left[\begin{array}{c} \sum_{(i,j)\in\delta(S)} x_{ij} \geq 2 \left[\frac{1}{\max_k Q_k} \sum_{i\in S} q_i \right] \\ & \sum_{(i,j)\in\delta(S)} x_{ij} \geq \sum_{j\in V_C} x_{0j} \\ & \forall S \subseteq V_C \\ & \sum_{(i,j)\in\delta(S)} x_{ij} + 2 \sum_{i\in S} (1 - y_i^k) \geq 2 \left[\frac{1}{Q_k} \sum_{i\in S} q_i \right] \\ & \forall S \subseteq V_C, \forall k \\ \\ & \text{Assignment} \\ & \left[\begin{array}{c} \sum_{k} y_i^k = 1 \\ & y_i^k \geq x_{i,n+k} \\ & 1 - x_{ij} \geq \max\left\{ y_i^k - y_j^k, y_j^k - y_i^k \right\} \\ & \forall i, j \in V_C; i < j, \forall k \\ \end{array} \right] \end{split}$$

Demand Uncertainty

- In practice, customer demands are often not known with certainty
 - Deterministic routing plan can become infeasible or too expensive
 - Importance is amplified for Fleet Sizing and Mix problems: not accounting for uncertainty can lead to high rental/capital costs
- Objective is to design minimum cost routing plan that remains feasible for all demand realizations within the "uncertainty set"

 $\mathcal{Q} = \left\{ \boldsymbol{q} \in \mathbb{R}^n_+ : W \boldsymbol{q} \le h \right\}$

Practically-meaningful uncertainty sets:

Inclusion-constrained budgets $\mathcal{Q}_{B} = \left\{ \boldsymbol{q} \in \left[\boldsymbol{\underline{q}}, \boldsymbol{\overline{q}} \right] : \sum_{i \in B_{l}} q_{i} \leq b_{l}, \quad \forall \ l = 1, \dots, L \right\}$ $B_{l} \subseteq B_{l'} \text{ or } B_{l'} \subseteq B_{l} \text{ or } B_{l} \cap B_{l'} = \emptyset \quad \forall \ l, l'$ Beta-net-alpha factor model

$$\mathcal{Q}_{F} = \left\{ \boldsymbol{q} \in \left[\boldsymbol{q}, \bar{\boldsymbol{q}} \right] : \exists \xi \in \Xi : \boldsymbol{q} = \boldsymbol{q}^{\mathbf{0}} + \Phi \xi \right\}$$

where $\Xi = \left\{ \xi \in \left[-1, 1 \right]^{F} : \left| \sum_{f=1}^{F} \xi_{f} \right| \le \beta F \right\}$

Robust Counterpart

All constraints remain exactly the same except "Generalized" RCI

$$(\mathbf{F1})\sum_{(i,j)\in\delta(S)} x_{ij}^k + 2\sum_{i\in S} \left(1 - y_i^k\right) \ge 2\left[\frac{1}{Q_k}\sum_{i\in S} q_i\right] \quad \forall S \subseteq V_C, \ \forall k, \forall \mathbf{q} \in \mathbf{Q}$$

Reformulated to obtain (similar for Formulation 2)
Robust Generalized RCI cuts:

$$(\mathbf{F1})\sum_{(i,j)\in\delta(S)} x_{ij}^k + 2\sum_{i\in S} \left(1 - y_i^k\right) \ge 2\left[\frac{1}{Q_k}\max_{\boldsymbol{q}\in\mathcal{Q}}\sum_{i\in S} q_i\right] \quad \forall \ S\subseteq V_C, \ \forall \ k$$

- Can obtain closed-form solutions of $\max_{q \in Q} \sum_{i \in S} q_i$ for inclusion-constrained budgets and beta-net-alpha factor models (Gounaris et. al., *Oper. Res.*, 2013)
 - Can be used efficiently in a separation routine for Robust Generalized RCI cuts

Separation of Valid Robust Inequalities

- Generalized RCI cuts separated using Tabu Search metaheuristic
 - Construct an initial set $S \subseteq V_C$ using a greedy heuristic
 - Update S incrementally to maximize violation

Carnegie Mellor

- Incremental steps require repeated calculation of $\max_{q \in Q} \sum_{i \in S} q_i$ which is immediate because of closed-form solutions
- Generalized FCI cuts (not necessary, but strengthen linear relaxation)

$$(\mathbf{F1}) \qquad \sum_{(i,j)\in\delta(S)} x_{ij}^k \ge 2\sum_{i\in S} \frac{q_i}{Q_k} y_i^k \quad \forall \ S \subseteq V_C, \ \forall \ k, \forall \ \boldsymbol{q} \in \mathcal{Q}$$
$$(\mathbf{F2}) \qquad \sum_{(i,j)\in\delta(S)} x_{ij} \ge 2\sum_k \sum_{i\in S} \frac{q_i}{Q_k} y_i^k \quad \forall \ S \subseteq V_C, \ \forall \ k, \forall \ \boldsymbol{q} \in \mathcal{Q}$$

- For a given extreme point \hat{q} of Q, find maximally violated FCI $\hat{S} \subseteq V_C$ by solving an appropriate max-flow problem (polynomial time)
- Solve an LP over Q with fixed \hat{S} to get $q \in Q$ whose FCI is most violated
- Store in memory the generated extreme points for future separation

Conclusions and Future Work

- We developed two new deterministic MILP models for a broad class of industrially-relevant Heterogeneous VRPs
 - Generalized the classical RCI and FCI cuts
- We have developed Robust Counterparts of these models which have the same size as the original models.
- We developed efficient separation procedures for the Robust Generalized RCI cuts and Robust Generalized FCI cuts
- Future work:
 - Improve the strength of the aggregated formulation
 - Better RCI-like cuts for the deterministic and robust models
 - Explore cross-vehicle decomposition techniques
 - Apply models to a Dow case study