Integrated Scheduling and Dynamic Optimization of Batch Processes

Yisu Nie1 Lorenz T. Biegler1 John M. Wassick2 Carlos M. Villa2

1Center for Advanced Process Decision-making
Department of Chemical Engineering
Carnegie Mellon University

2The Dow Chemical Company

March 14, 2012
Introduction
Background and motivation

Current industrial practice for batch production

- Development of a batch process

\[
\text{Product recipe} \xrightarrow{\text{scale-up}} \text{Process recipe} \xrightarrow{\text{scheduling}} \text{Production process}
\]

- Lost productivity and lowered performance in unit operations
- Schedules sensitive to uncertainties in manufacturing
- Opportunities for process optimization

Optimizing the performance of a batch process in real-time

Approach

An optimization-based framework with integrated scheduling: assignment of batch operations and optimal control: execution of batch operations.

Steps

- Off-line
- On-line

Integrated optimizer

Batch plant
Schedule
Control strategy

Yisu Nie (Carnegie Mellon University)
Introduction

Background and motivation

Current industrial practice for batch production

- Development of a batch process

 Product recipe $\xrightarrow{\text{scale-up}}$ Process recipe $\xrightarrow{\text{scheduling}}$ Production process

 - Lost productivity and lowered performance in unit operations
 - Schedules sensitive to uncertainties in manufacturing
 - Opportunities for process optimization

Optimizing the performance of a batch process in real-time

Approach

An optimization-based framework with integrated

- Scheduling: assignment of batch operations
- Optimal control: execution of batch operations

Benefit

+ Adding value to existing assets
+ Improving plant profitability and reliability

Steps

Off-line \Rightarrow On-line
Problem Description
Integrated scheduling and dynamic optimization of batch plants

- **Given**
 - A batch plant with existing equipment
 - A time horizon to make products
 - Knowledge of process dynamics
Problem Description
Integrated scheduling and dynamic optimization of batch plants

- **Given**
 - A batch plant with existing equipment
 - A time horizon to make products
 - Knowledge of process dynamics

- **Determine**
 - The optimal production schedule
 - The optimal equipment control strategy
Problem Description
Integrated scheduling and dynamic optimization of batch plants

- **Given**
 - A batch plant with existing equipment
 - A time horizon to make products
 - Knowledge of process dynamics

- **Determine**
 - The optimal production schedule
 - The optimal equipment control strategy

- **Via**
 1. Process representation using the state equipment network (SEN)
 2. Mathematical optimization formulation
Problem Solving Methodology

Integrated optimization based on the SEN

- The SEN represents the process system as a directed graph connecting two kinds of nodes:
 - Material: Feed, intermediate and final products
 - Equipment: Process units carrying out operations

The integrated formulation includes:
- Objective function: Maximize Profit = Product sales - Material cost - Operating cost
- Constraints:
 - Scheduling considerations, assignment constraints, material balance, capacity constraints, timing constraints
 - Unit operation limitations: Dynamic first-principle models, limits on controls and states
 - Material quality measurement: Material blending, quality requirements
 - Auxiliary tightening constraints: Tightening timing constraints, mass balance of process units
Problem Solving Methodology
Integrated optimization based on the SEN

- The SEN represents the process system as a directed graph connecting two kinds of nodes

- Material Feed, intermediate and final products
 Equipment Process units carrying out operations

- The integrated formulation

Objective function Max \(\text{Profit} = \text{Product sales} - \text{Material cost} - \text{Operating cost} \)

Constraints
- Scheduling considerations
 Assignment constraints, material balance, capacity constraints, timing constraints

- Unit operation
 Dynamic first-principle models, limits on controls and states

- Material quality measurement
 Material blending, quality requirements

- Auxiliary tightening constraints
 Tightening timing constraints, mass balance of process units
Case Study
A jobshop batch plant

- Equipment units and products manufactured in the plant

- Maximizing the net profit within a 10-hour time horizon

MILP solved by CPLEX, MINLP solved by SBB (CONOPT)

Yisu Nie (Carnegie Mellon University)
Case Study

A jobshop batch plant

- Equipment units and products manufactured in the plant

- Maximizing the net profit within a 10-hour time horizon

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Profit (MU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipe-based</td>
<td>MILP</td>
<td>1374</td>
</tr>
<tr>
<td>Integrated</td>
<td>MINLP</td>
<td>1935</td>
</tr>
</tbody>
</table>

MILP solved by CPLEX, MINLP solved by SBB(CONOPT)
Case Study
A jobshop batch plant

- Equipment units and products manufactured in the plant

- Maximizing the net profit within a 10-hour time horizon

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Var.(Discrete) #</th>
<th>Nonlinear Var. #</th>
<th>Cons. #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipe-based</td>
<td>MILP</td>
<td>676(90)</td>
<td>0</td>
<td>1079</td>
</tr>
<tr>
<td>Integrated</td>
<td>MINLP</td>
<td>4978(90)</td>
<td>2292</td>
<td>12507</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Solution</th>
<th>Profit (MU)</th>
<th>CPU time (s)</th>
<th>Node(Best) #</th>
<th>Gap(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recipe-based</td>
<td></td>
<td>1374</td>
<td>0.366</td>
<td>288(199)</td>
<td>0.0</td>
</tr>
<tr>
<td>Integrated</td>
<td></td>
<td>1935</td>
<td>9564</td>
<td>5000(1602)</td>
<td>67.9</td>
</tr>
</tbody>
</table>

MILP solved by CPLEX, MINLP solved by SBB(CONOPT)
Case Study

Optimal production schedules in Gantt charts

Recipe-based approach

Integrated approach

Numbers in a slot: <event pt. > batch size

Yisu Nie (Carnegie Mellon University)
Case Study
Optimal operating profiles for batch units

- Optimal temperature profiles of Reactor 1

Dynamic profiles also obtained for Reactor 2 and Distillation Column
Industrial Application at Dow
Optimizing a real-world process with the integrated method

<table>
<thead>
<tr>
<th>Methodology development</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main results</td>
</tr>
<tr>
<td>▶ An integrated optimization formulation for batch scheduling and dynamic optimization based on the state equipment network</td>
</tr>
<tr>
<td>▶ A proof-of-concept case study: verified benefits of the integration</td>
</tr>
</tbody>
</table>
Methodology development

- **Main results**
 - An integrated optimization formulation for batch scheduling and dynamic optimization based on the *state equipment network*
 - A proof-of-concept case study: verified benefits of the integration

Application at Dow: an alkoxylation process

- **Process characteristics**
 - Polymerization reactions in *semi-batch* stirred tank reactors
 - Finishing train as a *continuous* process
 - Multiple products differ in composite *monomers*, *molecular weights*, *functionality*, etc.
Industrial Application at Dow
Alkoxylation process

Process chemistry*

- **Key ingredients**
 - Epoxides (ethylene oxide (EO), propylene oxide (PO))
 - ![Epoxide Structures]
 - Molecules containing active hydrogen atoms (alcohols, amines)
 - ![Alcohol and Amine Structures]
 - A basic catalyst (potassium hydroxide (KOH))

- **Basic procedures**
 - Starters are first mixed with catalyst in the liquid phase
 - Alkylene oxides are fed in controlled rates

Ionescu, M. Chemistry and Technology of Polyols for Polyurethanes; Rapra Technology: Shawbury, U.K., 2005.
Industrial Application at Dow
Development of process dynamic models

Modeling reaction kinetics

- Open literature example: Ethoxylation reaction*
 - Initiation
 \[
 \text{HOCH}_2\text{CH}_2\text{O}^-\text{K}^+ + \text{EO} \rightarrow \text{HOCH}_2\text{CH}_2\text{OEO}^-\text{K}^+
 \]
 - Propagation
 \[
 \text{HOCH}_2\text{CH}_2\text{O}(\text{EO})_i^-\text{K}^+ + \text{EO} \rightarrow \text{HOCH}_2\text{CH}_2\text{O}(\text{EO})_{i+1}^-\text{K}^+
 \]
 - Exchange
 \[
 \text{P}_i\text{O}^-\text{K}^+ \quad \text{growing chain} \quad + \quad \text{P}_j\text{OH} \quad \text{dormant chain} \quad \leftrightarrow \quad \text{P}_i\text{OH} \quad \text{dormant chain} \quad + \quad \text{P}_j\text{O}^-\text{K}^+ \quad \text{growing chain}
 \]

Planned work for the project

- **Dynamic model** development
 - Alternative monomers, copolymers
 - Vapor-liquid equilibrium
 - Molecular weight distributions

- **Scheduling** method development
 - Discrete-time resource task network

- Integration and on-line implementation
Industrial Application at Dow

Proposed future developments

Planned work for the project

- **Dynamic model** development
 - Alternative monomers, copolymers
 - Vapor-liquid equilibrium
 - Molecular weight distributions
- **Scheduling** method development
 - Discrete-time resource task network
- Integration and on-line implementation

Conclusions and acknowledgments

- Integration of scheduling and dynamic optimization using SEN revisited
- Application at Dow
- Thank you and any questions?