Long-term Turnaround Planning for Integrated Chemical Sites

Satya Amaran, Nick Sahinidis (CMU) Bikram Sharda, Matt Morrison, Scott Bury, Scott Miller, John Wassick (The Dow Chemical Company)

Carnegie Mellon

Motivation

- Large companies spend on the order of hundreds of millions of dollars on turnarounds annually
- Coordinating maintenance in integrated sites is a potential for significant savings while providing a long-term turnaround plan
- Practical limitations on manpower
 - Maintenance personnel typically contract workers
 - Infrequent spikes in manpower utilization
- Most scheduling is done using scenario-based analyses

Problem Statement

- Exploit network interactions, storage availability, and prices to schedule maintenance over a multi-year horizon
- Scope:
 - Max. profit
 - Continuous processes
 - Time horizon: 5-15 years
 - Site-wide (each unit is an entire plant)

Mixed Integer Linear Programming Model

• Objective: Max. profit

Revenue – maintenance costs – cost of raw materials

- Constraints
 - Network flow constraints
 - Inventory and mass balance
 - Nonnegativity constraints
 - Upper and lower bounds on inventory levels
 - Ratio constraints

MILP model (continued)

Constraints

- Big-M constraints on flow between units

 Ensure that flow is zero when unit is down; natural upper bound derived from pipe capacities

Financial constraints

Profit in each period is some fraction of average quarterly profit

Manpower constraints

 Cumulative manpower needed in each time period is bounded (safety reasons, availability, negotiation)

Turnaround constraints

Required frequencies and durations of turnarounds respected

Details of formulation

- Model statistics:
 - 17-plant integrated site
 - Horizon: 15 years
 - Discretization level: 1 week (~800 time periods)
 - Size of model: 16,000 binaries; 600,000 total
 - Solver used: CPLEX
- Advantages of rolling horizon formulation
 - Transitioning into new schedules
 - More flexibility in scheduling turnarounds
 - Incorporation of seasonal constraints

Sample schedule

7

Modeling improvements

• Transition from cyclic schedule \rightarrow rolling horizon

Schedule	Avg. profit units	Relative gap	Time to solve (s)
Cyclic Rolling horizon	2,564,801 2,599,788	$0.7\%\ 0.4\%$	$\frac{36}{1219} (4 \text{ iterations})$
Percentage improvement	= 1.36%		

Novelty

- Incorporation of three major concerns:
 - Avoidance of
 - maintenance tasks in
 - unfavorable conditions
 - Bringing down peak
 - manpower
 requirements
 - Balancing quarterly financial performance

Potential Impact

- Successfully demonstrated
 - Turnaround optimization for an industrial-size network
 - Efficient solution while retaining key model features
 - Incorporation of practical considerations
- Next steps: Use of discrete-event simulation to
 - Perform sensitivity analysis to identify most uncertain parameters
 - Debottlenecking network
 - Comparing various recommended schedules