Turnaround Optimization of Continuous Chemical Plants

Satya Amaran, Nick Sahinidis (CMU) Bikram Sharda, Scott Bury, Matt Morrison, Scott Miller (Dow)

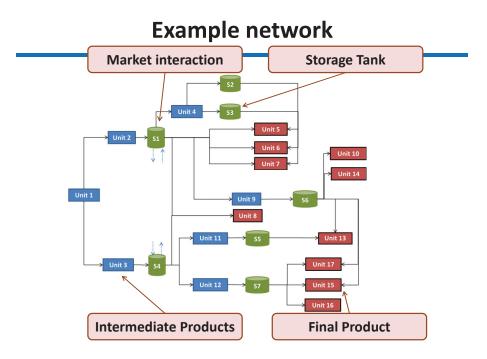
Carnegie Mellon

• Maintenance is defined as

"the combination of all technical and associated administrative actions intended to retain an item in, or restore it to a state in which it can perform its required function" ^[1]

- Turnaround optimization—Finding the optimal sequence of tasks in a turnaround envelope
- Involves consideration of:
 - Site-wide network structure
 - Flows and inventory levels
 - Turnaround resources

[1] Dedopoulos and Shah (1995)


Motivation

- Large companies spend millions on turnarounds annually
- Potential for significant savings
- Practical limitations on manpower
 - Maintenance personnel typically contract workers
 - Infrequent spikes in manpower utilization
- Most scheduling is done using scenario-based analyses

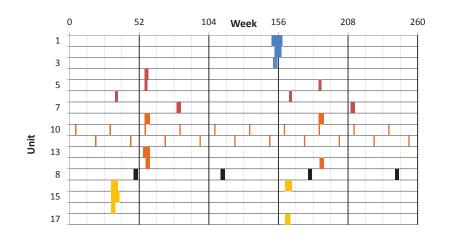
Scope of study

• Problem features

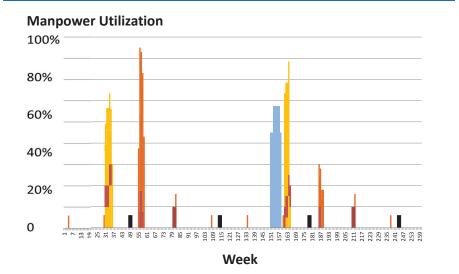
- Continuous processes
- Multi-year horizon
- Planned maintenance
- Intermediate inventory buffers
- Site-wide scope
- Objective: Maximize NPV subject to
 - Network flow constraints
 - Inventory constraints
 - Manpower limits
 - Turnaround durations and frequencies

Challenges

- Combinatorics
 - Scheduling requires discrete decisions
 - − Large number of units, and large time horizon → large number of binaries
- Uncertainty
 - Component failure rates, Lengths of turnarounds
 - Unit reliability, supply and demand variability within plant network
 - > 100 uncertain parameters → potentially too large for stochastic programming
- How do we
 - Choose right level of network abstraction?
 - Choose right time discretization?
 - Capture uncertainties?


Approach

- MILP
 - Useful for finding solutions to large-scale combinatorial problems with constraints
- Discrete-event simulation
 - Useful for capturing rule-based logic, priorities, variability in operations


Use best features of both approaches

Results – Gantt chart

Results – Manpower utilization

Summary and future work

- Demonstrated a hybrid optimization and simulation strategy to trade-off tractability and real-world practicality
- Provided general-purpose tool for analyzing sites for long-term turnaround planning
- Future work
 - Short-term scheduling to capture hourly/daily effects such as ramping, manpower allocation, etc.
 - Rolling horizon scheme as opposed to cyclic schedule

Analysis of results

- Envelope turnarounds occur together
 - Intuitive, as they are adjacent in site network
- Red envelope decoupled
 - Possibly due to potential of market interaction for raw materials
- Staggering of turnarounds (Unit 17)
 - Due to manpower limitations
 - Manpower intensive unit coupled 2nd turnaround
- Separation of turnarounds across years
 - Spread helps short-term financial results
 - Balances use of manpower