

Integrated Scheduling and Dynamic Optimization of Batch Processes Using State Equipment Networks

Yisu Nie¹ Lorenz T. Biegler¹ John M. Wassick²

¹Center for Advanced Process Decision-making Department of Chemical Engineering Carnegie Mellon University

²The Dow Chemical Company

October 13, 2011

通下 イヨト イヨト

Introduction

Carnegie Mellon

Background and motivation

- The current status quo of batch scheduling and operations
 - Batch process scheduling: recipe-based approaches
 - Decoupled scheduling and unit operations
 - ★ Dow's practice: Discrete-time resource-task network ¹
 - + Easy (linear) models for scheduling
 - Poor process flexibility
 - Loss of process profitability

Yisu Nie (Carnegie Mellon University)

 $^{^{1}}$ J.M. Wassick and J. Ferrio. Extending the resource task network for industrial applications. Computers and Chemical Engineering, 2011

+ Easy (linear) models for scheduling - Poor process flexibility - Loss of process profitability

Dynamic optimization of batch operations: few experiences

★ Dow's practice: Discrete-time resource-task network ¹

* Investigated mostly in single machine environment

The current status quo of batch scheduling and operations
 Batch process scheduling: recipe-based approaches
 * Decoupled scheduling and unit operations

Yisu Nie (Carnegie Mellon University)

EWO meeting

Introduction

Background and motivation

¹ J.M. Wassick and J. Ferrio. Extending the resource task network for industrial applications. Computers and Chemical Engineering, 2011 $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle$

Background and motivation

Introduction

- The current status quo of batch scheduling and operations
 - Batch process scheduling: recipe-based approaches
 - Decoupled scheduling and unit operations
 - * Dow's practice: Discrete-time resource-task network ¹
 - + Easy (linear) models for scheduling
 - Poor process flexibility
 - Loss of process profitability
 - Dynamic optimization of batch operations: few experiences
 - \star Investigated mostly in single machine environment
- Integration of scheduling and dynamic optimization
 - Adding value to existing assets
 - Improving plant reliability

¹ J.M. Wassick and J. Ferrio. Extending the resource task network for industrial applications. Computers and Chemical Engineering, 2011 $\langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle + \langle \Xi \rangle$

Introduction

Problem description

Given

- A batch plant with existing equipment
- A time horizon to make products
- Dynamic models of process operations
- Determine
 - The optimal production schedule
 - The optimal equipment control strategy
- Via
 - Process representation using the state equipment network(SEN)
 - 2 Mathematical optimization formulation

Solution Strategy

Integrated optimization based on the SEN

• The SEN represents the process system as a directed graph connecting two kinds of nodes

Material Feed, intermediate and final products Equipment Process units carrying out operations

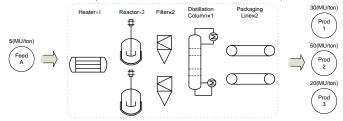
Solution Strategy

Integrated optimization based on the SEN

• The SEN represents the process system as a directed graph connecting two kinds of nodes

Material Feed, intermediate and final products Equipment Process units carrying out operations

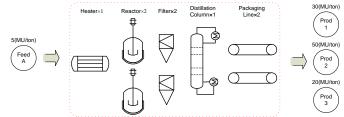
• The integrated formulation


Objective function	tion Max $Profit = Product sales - Material cost - Operating cost$
Constraints	 Scheduling considerations Assignment constraints, material balance, capacity constraints, timing constraints Unit operation
	 Dynamic first-principle models, limits on controls and states Material quality measurement Material blending, quality requirements Auxiliary tightening constraints Tightening timing constraints, mass balance of process units

Yisu Nie (Carnegie Mellon University)

A jobshop batch plant

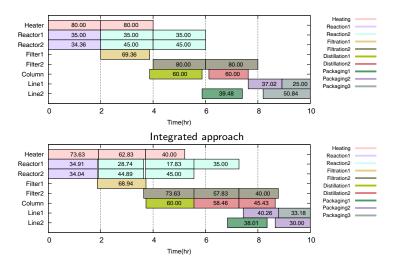
• Equipment units and products manufactured in the plant



.∃ >

A jobshop batch plant

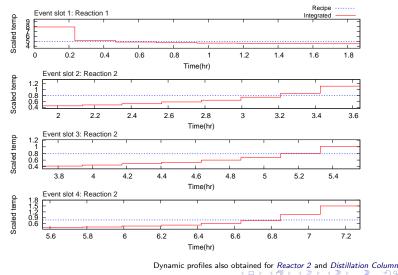
• Equipment units and products manufactured in the plant


• Maximizing the net profit within a 10-hour time horizon

Model	Statistics				
	Туре	Var.(Discrete) $\#$	Nonlinear Var. $\#$	Cons. #	
Recipe-based	MILP	676(90)	0	1079	
Integrated	MINLP	4978(90)	2292	12507	
Model	Solution				
	Profit(<i>MU</i>)	CPU time (s)	Node(Best) $\#$	Gap(%)	
Recipe-based	1374	0.366	288(199)	0.0	
Integrated	1935	9564	5000(1602)	67.9	

ত্যা 🔍

Optimal production schedules in Gantt charts


Recipe-based approach

Numbers inside slots are batch sizes (~

Optimal operating profiles for batch units

• Optimal temperature profiles of *Reactor 1*

Conclusions and Acknowledgments

- Concluding remarks
 - The *state equipment network* representation of batch processes
 - An optimization formulation for the integration of scheduling and dynamic optimization

Conclusions and Acknowledgments

- Concluding remarks
 - The *state equipment network* representation of batch processes
 - An optimization formulation for the integration of scheduling and dynamic optimization
- Future work

$\mathsf{Off}\text{-line}{\rightarrow}\mathsf{On}\text{-line}$

- Alternative scheduling formulations
- Data-driven dynamic models

Conclusions and Acknowledgments

Concluding remarks

- The *state equipment network* representation of batch processes
- An optimization formulation for the integration of scheduling and dynamic optimization
- Future work

$\mathsf{Off}\text{-line}{\rightarrow}\mathsf{On}\text{-line}$

- Alternative scheduling formulations
- Data-driven dynamic models
- Thank you

I am glad to take questions...