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Motivation

- The scheduling problem of blending operations arises frequently in the petrochemical industry.

- Although simple to represent, these models are highly nonconvex, leading to the need of global 
optimization techniques to find the optimal solution.

- The development of efficient solution methods that take care of the general case applied
to large scale systems remains as a challenge…

Goal: Develop tools and strategies aiming at improving the efficiency
of the solution methods for the global optimization of the multiperiod blend

scheduling problem
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Supply Intermediate Delivery

General Problem Topology

Important Assumptions:

- The quality of each stream/inventory is constant for a given period.
- A tank can receive or deliver in a given period of time but not both.
- Supply tanks keep a constant quality.
- Delivery tanks keep the quality within a given range.
- Streams entering delivery tanks should satisfy a quality condition.

The general case of a blending problem can be represented schematically as follows

Remarks:

- Examples of the supply nodes are 
the tanks loaded by ships or the 
feedstocks downstream the CDU

- Examples of the delivery nodes are 
the tanks feeding the CDU or the 
tanks delivering to final customers
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Observations
Numerical tests using Lagrangian Relaxation

with temporal decomposition

Initialize uo, BestLB,
BestUB, k

Solve LR1 Solve LR2 Solve LRN

LB = ∑ LBLRi

If BestLB < LB
BestLB = LB

Obtain UB
(Solve local MINLP)

Update Multipliers
ut+1=ut – t*Error
t = a / (b + k)

k=k+1

If BestUB-BestLB < 
or k = maxiter – 1 

STOP 

1- High computational 
time required in sub-
problems  (> 5min)

2- Difficulties to find
local solutions

How do we tackle these
issues?
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Finding Local Solutions
Outer Approximation Method

MASTER

NLP(yj)

Fix Integer (yj)

Add linearizations
from solution of

NLP (yj)

Lower Bound

Upper Bound

If (Up Bound -Lo Bound)
is less than 

STOP

If  MASTER 
infeasible
STOP

If NLP(yj) infeasible
remove yj

- Reducing the number of bilinear terms in NLP(yj) leads to a more robust formulation

Remarks

- Having good bounds for the variables is of main importance to find tight relaxations

Bounds of 
variables

The MASTER problem can
be tightened by adding McCormick
Convex envelopes for the bilinear

terms



Carnegie Mellon
6

i

j

Fijt

Cqit
tiqCC qjtEjiqit ,,)(min 1),(

 

tiqCC qjtEjiqit ,,)(max 1),(
 

Observation
If two streams are mixed together, the concentration of any given component in 
the mixture  is always higher/lower than the minimum/maximum concentration  
in the streams  

How can we use it to infer bounds for the compositions?

Finding Local Solutions
Tighter bounds for variables (I)

Mathematical Representation
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tiqCC UP
qjtEji

UP
qit

1,,0  tiqCC qi
UP
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Lower Bounds Upper Bounds

Illustrative Example

1

2

3 4

t=0 t=1 t=2
LO UP LO UP LO UP

Node 1 0.2 0.2 0.2 0.2 0.2 0.2
Node 2 0.3 0.3 0.3 0.3 0.3 0.3
Node 3 0.4 0.4 0.2 0.4 0.2 0.4
Node 4 0.5 0.5 0.4 0.5 0.2 0.5

Lower and upper bound tightening can be achieved 
in the preprocessing step

C10=0.2

C20=0.3

C30=0.4

C40=0.5

Finding Local Solutions
Tighter bounds for variables (II)
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Finding Local Solutions
Tighter bounds for variables (III)

Performance Analysis

2

1 4

3

Global 
Optimum

Using original
bounds

Using inferred
bounds

Instance 1 -2900 -4958 -4083

Instance 2 -10900 -20958 -14650

Predicted lower bounds at first MASTER problem

Remark
Improvements in the bounds prediction can be obtained if lower/upper bounds 
of flows and inventory levels are considered
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Finding Local Solutions
Reduced number of bilinear terms

Traditional MINLP Formulation

By exploiting the underlying logic structure of the problem, a reduction of the
number of bilinear terms can be achieved

Proposed GDP Formulation

One general 
state

Two states
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Finding Local Solutions
Numerical Results

Performance Analysis

- 11 random instances

- Outer approximation solver DICOPT(GAMS)

- Three different formulations (all using McCormick envelopes):
1- Original MINLP 
2- Formulation with reduced number of bilinear terms
3- Formulation with reduced number of bilinear terms  plus bound tightening

Remarks

- Formulation (3) outperformed Formulation (2) in 20% of the instances 
- Formulation (1) led to a large number of  “false” infeasible problems

- Formulation (2) and (3) found feasible solutions in more than 70% of instances

- Forced to stop after 10 iterations or 30 minutes 
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Solution of LRi sub-problems
Spatial Decomposition

Initialize uo, BestLB,
BestUB, k

Solve LR1 Solve LR2 Solve LRN

LB = ∑ LBLRn

If BestLB < LB
BestLB = LB

Obtain UB
(Solve local MINLP)

Update Multipliers
ut+1=ut – t*Error
t = a / (b + k)

k=k+1

If BestUB-BestLB < 
or k = maxiter – 1 

STOP

Period N

Spatial Decomposition

How do we decompose
it spatially?
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Solution of LRi sub-problems
Minimal cut-edge with fixed nodes
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Number of nodes
in disjoint subsets

Incidence
Matrix

If yik = 1 then the
node i belongs to 

the subset k

cut!

Objective: Minimize the edges that cross the boundaries
of each subset
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Sub-Set 1

Sub-Set 2

Sub-Set 3

Dualized constraints necessary: 3(n+1)
(n: number of properties considered)

Solution of LRi sub-problems
Minimal cut-edge with fixed nodes example
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-Baron takes 347 seconds (~6min) to solve the problem with a 
solution of 20954.8

-The spatial decomposition solves the problem in 1 iteration:

MIP separation problem: 5 seconds

Sub-problem 1:  (sol: 6096.0)  1.6 seconds
Sub-problem 2:  (sol: 11451.8)  1.4 seconds
Sub-problem 3:  (sol: 3407.0)  1.5 seconds 

TOTAL: (sol: 20954.8) 9.5 seconds

Remarks:

- Even though it is not expected for general problems to converge in
one iteration, even with 15 iterations, the time necessary would be
~1 min 

Solution of LRi sub-problems
Numerical Results
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Remarks

- Explored the spatial decomposition of each LR sub-problem
to speed up convergence. A systematic decomposition approach
was proposed.

- Implement spatial decomposition of the sub-problems within the
global optimization framework.

- Proposed a new formulation and bounding procedure to find 
local solutions more easily.

Future work

- Add cuts to strengthen relaxation for LR (from Vector Space
Analysis ?)


