

ExxonMobil

1

Multiperiod Blend Scheduling Problem

Juan Pablo Ruiz Ignacio E. Grossmann

Department of Chemical Engineering Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213

Motivation

- The scheduling problem of blending operations arises frequently in the petrochemical industry.

- Although simple to represent, these **models are highly nonconvex**, leading to the need of **global optimization** techniques to find the optimal solution.

- The development of **efficient solution methods** that take care of the general case applied to large scale systems **remains as a challenge**...

Goal: Develop tools and strategies aiming at improving the efficiency of the solution methods for the global optimization of the multiperiod blend scheduling problem

General Problem Topology

The general case of a blending problem can be represented schematically as follows

Remarks:

- Examples of the **supply nodes** are the tanks loaded by ships or the feedstocks downstream the CDU

- Examples of the **delivery nodes** are the tanks feeding the CDU or the tanks delivering to final customers

Important Assumptions:

- The quality of each stream/inventory is **constant** for a given **period**.
- A tank can receive or deliver in a given period of time but not both.
- Supply tanks keep a constant quality.
- **Delivery** tanks keep the **quality** within a given **range**.
- Streams entering delivery tanks should satisfy a quality condition.

Observations Numerical tests using Lagrangian Relaxation with temporal decomposition

Finding Local Solutions Outer Approximation Method

Remarks

- Reducing the number of bilinear terms in $NLP(y_i)$ leads to a more robust formulation
- Having good bounds for the variables is of main importance to find tight relaxations

Finding Local Solutions Tighter bounds for variables (I)

Observation

If **two streams** are **mixed** together, the **concentration** of any given component in the mixture is always **higher/lower** than the **minimum/maximum** concentration in the streams

Mathematical Representation

$$C_{qit} \ge \min_{(i,j)\in E}(C_{qjt-1}) \quad \forall q, i, t$$

$$C_{qit} \leq \max_{(i,j)\in E}(C_{qjt-1}) \quad \forall q, i, t$$

How can we use it to infer bounds for the compositions?

Finding Local Solutions Tighter bounds for variables (II)

 $\forall q, i, t > 1$

Lower Bounds

Upper Bounds

$$C_{qit}^{LO} = C_{qi0} \quad \forall q, i, t = 1$$

$$C_{qit}^{LO} \ge \min_{(i,j)\in E} (C_{qjt-1}^{LO}) \quad \forall q, i, t > 1$$

$$C_{qit}^{UP} = C_{qi0} \quad \forall q, i, t = 1$$

$$C_{qit}^{UP} \le \max_{(i,j)\in E} (C_{qjt-1}^{UP}) \quad \forall q, i, t > 1$$

Illustrative Example

	t=0		t=1		t=2	
	LO	UP	LO	UP	LO	UP
Node 1	0.2	0.2	0.2	0.2	0.2	0.2
Node 2	0.3	0.3	0.3	0.3	0.3	0.3
Node 3	0.4	0.4	0.2	0.4	0.2	0.4
Node 4	0.5	0.5	0.4	0.5	0.2	0.5

Lower and upper bound tightening can be achieved in the preprocessing step

Finding Local Solutions Tighter bounds for variables (III)

Performance Analysis

Predicted lower bounds at first MASTER problem

	Global Optimum	Using original bounds	Using inferred bounds
Instance 1	-2900	-4958	-4083
Instance 2	-10900	-20958	-14650

Remark

Improvements in the bounds prediction can be obtained if lower/upper bounds of **flows and inventory** levels are **considered**

$$\begin{split} C_{qit} \geq \min(\frac{I_{qit-1}C_{qit-1} + \sum_{(i,j)\in E} F_{jit}C_{qjt-1}}{I_{qit}}) \geq \frac{I_{qit-1}^{LO}C_{qit-1}^{LO} + \sum_{(i,j)\in E} F_{jit}C_{qjt-1}}{I_{qit}^{UP}} & \forall q, i, t \\ C_{qit} \leq \max(\frac{I_{qit-1}C_{qit-1} + \sum_{(i,j)\in E} F_{jit}C_{qjt-1}}{I_{qit}}) \leq \frac{I_{qit-1}^{UP}C_{qit-1}^{UP} + \sum_{(i,j)\in E} F_{jit}C_{qjt-1}}{I_{qit}^{UP}} & \forall q, i, t \end{split}$$

Finding Local Solutions Reduced number of bilinear terms

By exploiting the underlying logic structure of the problem, a reduction of the number of bilinear terms can be achieved

Finding Local Solutions Numerical Results

Performance Analysis

- 11 random instances
- Outer approximation solver **DICOPT(GAMS)**
- Three different formulations (all using McCormick envelopes):
 - **1** Original MINLP
 - 2- Formulation with reduced number of bilinear terms
 - **3** Formulation with reduced number of bilinear terms plus bound tightening

- Forced to stop after 10 iterations or 30 minutes

Remarks

- Formulation (2) and (3) found **feasible solutions** in more than 70% of instances
- Formulation (3) outperformed Formulation (2) in 20% of the instances
- Formulation (1) led to a large number of "false" infeasible problems

Solution of LR_i sub-problems Spatial Decomposition

Solution of LRi sub-problems Minimal cut-edge with fixed nodes

<u>Objective:</u> Minimize the edges that cross the boundaries of each subset

Solution of LRi sub-problems Minimal cut-edge with fixed nodes example

Dualized constraints necessary: <u>3(n+1)</u> (*n: number of properties considered*)

Carnegie Mellon

13

Solution of LR_i sub-problems Numerical Results

-Baron takes 347 seconds (~6min) to solve the problem with a solution of 20954.8

-The spatial decomposition solves the problem in **1 iteration**:

MIP separation problem:

5 seconds

TOTAL:	(<u>sol: 20954.8</u>)	9.5 seconds
Sub-problem 3:	(sol: 3407.0)	1.5 seconds
Sub-problem 2:	(sol: 11451.8)	1.4 seconds
Sub-problem 1:	(sol: 6096.0)	1.6 seconds

Remarks:

Even though it is not expected for general problems to converge in one iteration, even with 15 iterations, the time necessary would be ~1 min

- Proposed a **new formulation and bounding procedure** to find **local solutions** more easily.
- Explored the **spatial decomposition** of each LR sub-problem to speed up convergence. A **systematic decomposition** approach was proposed.

Future work

- Implement **spatial decomposition** of the sub-problems within the **global** optimization **framework**.
- Add **cuts to strengthen relaxation for LR** (from Vector Space Analysis ?)