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Introduction Motivation

Supply Chain Disruptions Are as Old as Supply Chains

East India Company
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Introduction Motivation

Supply Chain Disruptions Are as Old as Supply Chains

Wells Fargo
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Introduction Motivation

Why the Recent Interest?

1 Recent high-profile disruptions

West-coast port lockout (2002)
Icelandic volcano (Eyjafjallajökull) eruption (2010)
Japan earthquake (2011)
Hurricane Sandy (2012)
COVID-19 pandemic (2020–??)

2 Focus on lean supply chain management

aka just-in-time (JIT), etc.
Systems contain very little slack
Efficient, but fragile
There is value to having slack in a system

3 Increasingly global supply chains

A single supply chain may span the globe
Firms are less vertically integrated
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Introduction Motivation

Mitigation Strategies

Sourcing

Business interruption insurance

Rerouting

Demand management

Inventory
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Introduction Motivation

Stockpiling: Petroleum

Northeast Home Heating Oil Reserve
(photo: energy.gov)
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Introduction Motivation

Stockpiling: Helium

U.S. Federal Helium Reserve
(photo: redorbit.com)
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Introduction Motivation

Stockpiling: ???

Maple Syrup

Global Strategic Maple Syrup Reserve
(photo: theglobeandmail.com)
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Introduction Motivation

Stockpiling: Twinkies

Hostess Bankruptcy
(photo: money.msn.com)
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Introduction Literature Review

Literature: Single-Stage Systems with Disruptions

Classical models + disruptions:

EOQ: Parlar and Berkin (1991), Berk and Arreola-Risa (1994), lvs
(2014)
EOQ + safety stock: Parlar and Perry (1995, 1996), Heimann and
Waage (2007)
Stochastic demand: Gupta (1996), Parlar (1997), Mohebbi (2003,
2004), Schmitt, lvs, and Shen (2010).

Strategic questions:

Optimal strategy: Tomlin (2006)
Supplier flexibility: Tomlin and Wang (2005), Saghafian and van Oyen
(2012, 2014)
Value of advanced information: lvs and Tomlin (2007), Wang and
Tomlin (2009)
“Bundling” disruptions and yield uncertainty: Chopra et al. (2006),
Schmitt and lvs (2006)

Snyder (Lehigh) Inventory Optimization with Disruptions CMU EWO 11/5/20 13 / 47



Introduction Literature Review

Literature: Single-Stage Systems with Disruptions

Classical models + disruptions:

EOQ: Parlar and Berkin (1991), Berk and Arreola-Risa (1994), lvs
(2014)
EOQ + safety stock: Parlar and Perry (1995, 1996), Heimann and
Waage (2007)
Stochastic demand: Gupta (1996), Parlar (1997), Mohebbi (2003,
2004), Schmitt, lvs, and Shen (2010).

Strategic questions:

Optimal strategy: Tomlin (2006)
Supplier flexibility: Tomlin and Wang (2005), Saghafian and van Oyen
(2012, 2014)
Value of advanced information: lvs and Tomlin (2007), Wang and
Tomlin (2009)
“Bundling” disruptions and yield uncertainty: Chopra et al. (2006),
Schmitt and lvs (2006)

Snyder (Lehigh) Inventory Optimization with Disruptions CMU EWO 11/5/20 13 / 47



Introduction Literature Review

Literature: Single-Stage Systems with Disruptions

Related areas:

Yield/quality uncertainty: Anupindi and Akella (1993), Dada et
al. (2007), Federgruen and Yang (2009), Wang et al. (2010), Wang
(2013), Li, Li, and Saghafian (2013)
Capacity uncertainty: Ciarallo et al. (1994), Wang et al. (2010)
Lead-time uncertainty: Nahmias (1979), Wang and Tomlin (2009)

Survey papers: Vakharia and Yeniparzarli (2008), Atan and
lvs (2012, 2014), lvs et al. (2016)
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Introduction Literature Review

Literature: Multi-Echelon Systems with Disruptions

Yield uncertainty in 3-echelon supply chain: Kim et al. (2005)

Simulation studies: Deleris and Erhun (2005), lvs and Shen (2006),
Schmitt and Singh (2009, 2011)

Network analysis: Wu and Blackhurst (2005), Wu et al. (2007)

Inventory and capacity in assembly systems: Hopp and Yin (2006)

Service levels in general systems: Schmitt (2011)

Inventory optimization for assembly systems: DeCroix (2013)

Very little research on multi-echelon inventory optimization with disruptions
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Introduction Types of Multi-Echelon Systems

Network Topology

System is composed of stages

Stages are grouped into echelons

Stages can represent:

Physical locations
Items in BOM
Processing activities
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Introduction Types of Multi-Echelon Systems

Terminology

Stages to the left are upstream

Stages to the right are downstream

Downstream stages face customer demand

Upstream stages receive outside supply

Network topologies, in increasing order of difficulty:
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Introduction Types of Multi-Echelon Systems

Serial (Series) System

Each stage has at most one predecessor and at most one successor

Optimal Replenishment Policy: Echelon base-stock policy

Algorithm: Decompose into single-variable, convex optimization
problems—one per stage

Clark and Scarf (1960), Chen and Zheng (1994)

Heuristic: Newsvendor heuristic (Shang and Song 2003)
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Introduction Types of Multi-Echelon Systems

Assembly System

Each stage has at most one successor

Optimal Replenishment Policy: Balanced echelon base-stock policy

Algorithm: Reduce to equivalent serial system; solve using serial
system algorithm (Rosling 1989)

Heuristics: Various heuristic policies
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Introduction Types of Multi-Echelon Systems

Distribution System

Each stage has at most one predecessor

Optimal Replenishment Policy: ???

Optimal Allocation Policy: ???

Algorithm: Projection algorithm (Graves 1985)

Heuristics: METRIC (Sherbrooke 1968), two-moment approximation
(Graves 1985), restriction–decomposition (Gallego, et al. 2007),
decomposition and aggregation (Özer and Xiong 2008; Rong, Atan,
and lvs 2017), recursive optimization (Rong, Atan, and lvs 2017)
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Introduction Types of Multi-Echelon Systems

Tree System

No restrictions on neighbors, but no cycles

Usually modeled using guaranteed-service approach

“Strategic safety stock placement”
Graves (1988), Graves and Willems (2000)
Dynamic programming algorithm

Snyder (Lehigh) Inventory Optimization with Disruptions CMU EWO 11/5/20 21 / 47



Introduction Types of Multi-Echelon Systems

General System

No restrictions on cycles

Guaranteed-service approach

Magnanti, et al. (2006)
Commercial IP solver
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Introduction Model Assumptions

Modeling Disruptions

Disruption process follows 2-state discrete-time [continuous-time]
Markov process

Disruption probability [rate] α
Recovery probability [rate] β
Capacity = ∞ when UP, 0 when DOWN

UP	   DOWN	  

α	


β	


1 - β	


1 - α	


Disruption at node j prevents j from placing replenishment orders

Node j may serve demand from on-hand inventory during disruption
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Introduction Model Assumptions

Expected Cost Function

Minimize long-run expected cost per unit time:

C (S) =
∑
i∈V

hiE[Ii ] +
∑
i∈L

piE[Bi ],

where

S = vector of base-stock levels
V = set of nodes
L = set of “leaf” nodes (demand-facing nodes)
hi , pi = holding, stockout costs at i
Ii , Bi = on-hand inventory, backorders at i

E[·] may be wrt supply, demand, or both

Ii and Bi are typically complex functions of S
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Serial Systems

Outline

1 Introduction

2 Serial Systems

3 Assembly Systems

4 Distribution Systems

5 Conclusions and Future Research
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Serial Systems

Serial Systems

Consider 2-node system

Can extend result to N nodes

Assumptions:

Discrete time, infinite horizon
General iid demand distribution
Disruptions at either node
(Clark–Scarf + disruptions)
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Serial Systems

Optimality of Base-Stock Policy

Theorem (Atan, Rong, and lvs 2009, Atan and lvs 2012)

An echelon base-stock policy is optimal at stage j , j = 1, . . . ,N.
S∗j depends only on disruption state.

Remarks

1 Similar theorem by DeCroix (2013); very different proof

2 Implies sequential optimization, like Clark and Scarf (1960), Chen and
Zheng (1994)

3 Characteristics of S∗:

Order nothing if disrupted
Order more if downstream disruption is worse

4 For finite horizon, solve as DP (large state space)
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Assembly Systems

Outline

1 Introduction

2 Serial Systems

3 Assembly Systems

4 Distribution Systems

5 Conclusions and Future Research
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Assembly Systems

Echelon Inventory and Long-Run Balance

5 

6 

7 

3 

4 

1 

2 

INj = echelon inventory of item j

Want INi = INj if i and j have common successor

Need pipeline inventories to be ≤ if total lead-times are ≤
Called long-run balance
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Assembly Systems

Long-Run Balance and Series Reduction

5 

6 

7 

3 

4 

1 

2 

5 6 7 3 4 1 2 

Proposition (Rosling 1989)

In an assembly system without disruptions, it is optimal for the system to
be in long-run balance at all times.

Theorem (Rosling 1989)

An assembly system without disruptions can be reduced to an equivalent
serial system.
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Assembly Systems

Disruptions Destroy Long-Run Balance

5 

6 

7 

3 

4 

1 

2 

If stage 6 may be disrupted, may want IN6 > IN5

DeCroix (2013):

Conditions under which item-specific long-run balance is optimal
Reduction to partial series system
Heuristic for base-stock levels based on Chen–Zheng (1994)
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Assembly Systems

Our Proposed Policy

5 
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4 

1 

2 6' 

Work in progress (He, lvs, DeCroix, Li 2020):

Allow disruption-prone stages to hold disruption stock
Optimized separately from regular inventory at stage

Proposition

It is optimal to hold disruption stock at stage i iff
[condition involving supply and demand distributions, costs, and a constant].

Moreover, it is optimal for disruption stock to follow a base-stock policy.

Unfortunately, it is difficult to determine the constant explicitly
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Assembly Systems

Partial Series Reduction with Disruption Stock
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2 6' 

6 7 3 4 1 2 

6' 

5 

Approximate reduction to equivalent series system plus disruption
stock

Heuristic for base-stock levels
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Assembly Systems

Numerical Results

Test on 3 network structures

Various values of costs, disruption parameters

Normally distributed demand

Expected cost via simulation
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Assembly Systems

Comparison to DeCroix’s Solution

2000 4000 6000 8000 10000
DeCroix Policy

2000

4000

6000

8000

10000

Ou
r P

ol
icy

system_1
system_2
system_3

Both heuristics are fast (seconds)
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Distribution Systems

Outline

1 Introduction

2 Serial Systems

3 Assembly Systems

4 Distribution Systems
Overview
The Risk-Diversification Effect

5 Conclusions and Future Research
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Distribution Systems Overview

Distribution Systems

Must consider both replenishment policy and allocation policy

Optimal policy is not known for either

Typically choose plausible policies—e.g., base-stock and FCFS—and
then optimize parameters

But parameter optimization is also difficult
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Distribution Systems The Risk-Diversification Effect

Risk Pooling and Risk Diversification

0 
3 

4 

1 

2 

One-warehouse, multiple retailer (OWMR) system

Periodic review

Inventory allowed at warehouse or retailers (not both), using
base-stock policy

Centralization vs. decentralization
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Distribution Systems The Risk-Diversification Effect

The Risk-Pooling Effect

If demand is stochastic, centralization
minimizes expected cost

The risk-pooling effect (Eppen 1979)

Cost variances are equal (Schmitt, Sun, lvs,
Shen 2015)

0 
3 

4 

1 

2 

Expected Cost Variance of Cost

Stochastic Demand E[CC ] < E[CD ]

V[CC ] = V[CD ]

Stochastic Supply
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Distribution Systems The Risk-Diversification Effect

The Risk-Diversification Effect

Now assume supply can be disrupted

Same disruption process at all sites

Demand is deterministic

Then decentralization minimizes cost variance

But expected cost is equal under centralization
and decentralization

The risk-diversification effect

(Schmitt, Sun, lvs, Shen 2015)

0 
3 

4 

1 

2 

Expected Cost Variance of Cost

Stochastic Demand E[CC ] < E[CD ] V[CC ] = V[CD ]

Stochastic Supply

E[CC ] = E[CD ] V[CC ] > V[CD ]
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Which Effect Dominates?

Suppose demand and supply are both stochastic

Is centralization or decentralization preferable?

Fully risk-neutral decision maker prefers centralization

Fully risk-averse decision maker prefers decentralization

What about in between?

(1− κ)E[C ] + κ
√
V[C ]
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Risk-Diversification Effect Nearly Always Dominates
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Decentralization is typically preferred, unless:

Service level (newsvendor fractile) is very small

κ is very small

Disruptions are very infrequent or short
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Other Work

Inventory at warehouse and retailers (Atan and lvs 2012)

General distribution systems: approximate cost function (He
dissertation 2014)
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Problem Analytical Results Heuristic Exact Alg.
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Closed-form solutions
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Approx. cost function � ×

× × ×
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A Quick, Shameless Plug

?
?

?
?

?

Snyder and Shen, Fundamentals of Supply
Chain Theory, 2nd edition, Wiley, 2019.

Snyder, Smilowitz, and Shen, Supply Chain
Modeling and Optimization, Dynamic Ideas,
2021.
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Questions?

larry.snyder@lehigh.edu

coral.ise.lehigh.edu/larry
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Thank You!
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