Global Optimization for Scheduling Refinery Crude Oil Operations

Ramkumar Karuppiah¹, Kevin C. Furman² and Ignacio E. Grossmann¹

¹ Department of Chemical Engineering
Carnegie Mellon University

² Corporate Strategic Research
Exxonmobil Research and Engineering

Enterprise-wide Optimization Project
Motivation

- Scheduling and Planning of crude oil is key problem in petrochemical refineries
- Large cost savings can be realized with an optimum schedule for the movement of crude oil

How to coordinate discharge of vessels with loading to storage?
How to synchronize charging tanks with crude-oil distillation?
Problem Statement

Given:
(a) Maximum and minimum inventory levels for a tank
(b) Initial total and component inventories in a tank
(c) Upper and lower bounds on the fraction of key components in the crude inside a tank
(d) Times of arrival of crude oil in the supply streams
(e) Amount of crude arriving in the supply streams
(f) Fractions of various components in the supply streams
(g) Bounds on the flowrates of the streams in the network
(h) Time horizon for scheduling

Determine:
(i) Inventory levels in the tanks at various points of time
(ii) Flow volumes from one unit to another in a certain time interval
(iii) Start and end times of the flows in the network

Objective: Minimize Cost
Previous Work

Scheduling Model

- Continuous time formulation by Furman et al. (2006)

- Based on **time events** where inputs and outputs for a unit can take place in the same time event
 - Assumption: No simultaneous input and output for a tank
 - Transfers from one tank to another are denoted by **streams**

- Formulation reduces number of binary variables required in the scheduling model

Optimization model

Minimize
cost objective

s.t.

- **Tank constraints**
- **Distillation unit (CDU) constraints**
- **Supply stream constraints**
- **Variable bounds** (P)

Binary Variables

Variables in the model

- $I_{b,t}^{tot}$ – Total inventory in tank b at end of time event t
- $I_{b,t}^{j}$ – Inventory of component j in tank b at end of time event t
- $V_{s,t}^{tot}$ – Total flow in stream s in time event t
- $V_{s,t}^{j}$ – Flow of component j in stream s in time event t
- $T_{s,t}^{1}$ – Start time of flow in stream s in time event t
- $T_{s,t}^{2}$ – End time of flow in stream s in time event t
- $w_{s,t}$ – Existence of flow in stream s in time event t
Time representation

- Instead of using global times \(t \), events \(t \) are used

- Instead of timing of individual operations, timing of transfers is used
Model Constraints

Tank constraints

- Crude inflow
- Crude outflow
- Crude Tank

- Total Inventory balances
- Individual component balances
- Duration constraints
 - To bound the flow of a stream into/from a tank in a particular time event
- Simple sequencing constraints
- Bounds on component fractions inside a tank

Non-linear equations containing Bilinearities
Model Constraints (Contd ...)

Distillation unit constraints

- **Continuous operation constraint**
- **Allocation constraints**
 - At most one CDU can be charged by a charging tank at a time
 - At most one charging tank can charge a CDU at any point of time
- **Crude-mix demand constraints**

Crude supply stream constraints

- **Overall mass balances**
- **Component mass balances**
- **Start and end timing constraints**
Non-convex MINLP

Objective function:

Minimize a cost objective similar to the one by Jia and Ierapetritou (2003)

\[
\min \quad \text{total cost} = \text{waiting cost for supply streams} + \text{unloading cost of supply streams} + \text{inventory cost for each tank over scheduling horizon} + \text{setup cost for charging CDUs with different charging tanks}
\]

- Scheduling problem modeled as a **Mixed Integer Nonlinear Program (MINLP)**
 - Discrete variables used to determine which flows should exist and when
 - Model is non-linear and non-convex

Overall model \(\equiv (P) \) \(\rightarrow \) Non-convex MINLP

Convex relaxation of \((P) \)
(obtained by linearizing non-linear equations in Tank constraints and introducing McCormick estimators (1976) for bilinear terms)

\(\equiv (R) \) \(\rightarrow \) MILP
Global Optimization of MINLP

- Large-scale non-convex MINLPs such as (P) are very difficult to solve
 - Commercial global optimization solvers *fail to converge to solution* in tractable computational times

- Special Outer-Approximation algorithm proposed to solve problem to global optimality
 - Guaranteed to converge to global optimum given certain tolerance between lower and upper bounds

- **Upper Bound**: Feasible solution of (P)
- **Lower Bound**: Obtained by solving a MILP relaxation (R) of the non-convex MINLP model with Lagrangean Decomposition based cuts added to it
Spatial Decomposition of the Network

- Network is split into two decoupled sub-structures D1 and D2
 - Physically interpreted as cutting some pipelines (Here \(a, b \) and \(c \))
 - Set of split streams denoted by \(p \in \{ a, b, c \} \)
Decomposition of the model

- Create **two copies** of the variables pertaining to the split streams \(\{V_{p,t}^{\text{tot},1}, V_{p,t}^{j,1}, T_{p,t}^{1,1}, T_{p,t}^{2,1}, W_{p,t}^{1}\} \) and get two sets of **duplicate variables**:

 \[
 \{V_{p,t}^{\text{tot},2}, V_{p,t}^{j,2}, T_{p,t}^{1,2}, T_{p,t}^{2,2}, W_{p,t}^{2}\}
 \]

- The equations involving the split streams are **re-written in terms of the newly created variables**

- These **duplicate variables** are related by equality constraints which are added to (R) to get model (RP):

 \[
 V_{p,t}^{\text{tot},1} - V_{p,t}^{\text{tot},2} = 0 \quad \forall p, t \\
 V_{p,t}^{j,1} - V_{p,t}^{j,2} = 0 \quad \forall j, p, t \\
 T_{p,t}^{1,1} - T_{p,t}^{1,2} = 0 \quad \forall p, t \\
 T_{p,t}^{2,1} - T_{p,t}^{2,2} = 0 \quad \forall p, t \\
 W_{p,t}^{1} - W_{p,t}^{2} = 0 \quad \forall p, t
 \]

- **Non-anticipativity constraints** in (RP) are multiplied by Lagrange multipliers and transferred to objective function to bring model to a decomposable form which is decomposed into sub-models (LD1) and (LD2)
Decomposed Sub-models

\[\min z_1 = \text{waiting cost for supply streams} + \text{unloading cost of supply streams} + \text{inventory cost for tanks in D1 over scheduling horizon} + \text{setup costs for charging CDUs in D1 with different charging tanks} + \]

\[\sum_{p} \sum_{t} z_{pt}^{1} + \sum_{j} \sum_{p} \sum_{t} z_{jpt}^{2} + \sum_{p} \sum_{t} z_{pt}^{1} + \sum_{p} \sum_{t} z_{pt}^{2} + \sum_{p} \sum_{t} z_{pt}^{2} \]

s.t.
- Tank constraints
- Distillation unit constraints
- Supply stream constraints
- Variable bounds

Optimize to get solution \[z_1^* \]

\[\text{(LD1)} \]

Sub-problem involves duplicate variables \(\{p_{p,t}, V_{j,t}, T_{p,t}, T_{p,t}, w_{p,t} \} \)

\[\min z_2 = \text{inventory cost for tanks in D2 over scheduling horizon} + \text{setup costs for charging CDUs in D2 with different charging tanks} + \]

\[- \sum_{p} \sum_{t} z_{pt}^{1} + \sum_{j} \sum_{p} \sum_{t} z_{jpt}^{2} - \sum_{p} \sum_{t} z_{pt}^{1} + \sum_{p} \sum_{t} z_{pt}^{2} - \sum_{p} \sum_{t} z_{pt}^{2} \]

s.t.
- Tank constraints
- Distillation unit constraints
- Variable bounds

Optimize to get solution \[z_2^* \]

\[\text{(LD2)} \]
Cut Generation

Using solutions z_1^* and z_2^* we develop the following cuts:

$$z_1^* \leq \text{waiting cost for supply streams} + \text{unloading cost of supply streams} + \text{inventory cost for tanks in D1 over scheduling horizon} + \text{setup costs for charging CDUs in D1 with different charging tanks} +$$

$$\sum_p \sum_t \lambda_{p,t}^{V_{\text{tot}}} + \sum_j \sum_p \sum_t \lambda_{j,p,t}^V + \sum_p \sum_t \lambda_{p,t}^{T_{\text{tot}}} + \sum_p \sum_t \lambda_{p,t}^{W_{\text{tot}}}$$

Remark:
Update Lagrange multipliers and generate more cuts to add to (R)

$$z_2^* \leq \text{inventory cost for tanks in D2 over scheduling horizon} + \text{setup costs for charging CDUs in D2 with different charging tanks} +$$

$$-\sum_p \sum_t \lambda_{p,t}^{V_{\text{tot}}} - \sum_j \sum_p \sum_t \lambda_{j,p,t}^V - \sum_p \sum_t \lambda_{p,t}^{T_{\text{tot}}} - \sum_p \sum_t \lambda_{p,t}^{W_{\text{tot}}}$$

Add above cuts to (R) to get (R') which is solved to obtain a valid lower bound on global optimum of (P)
Advantages of Cut Generation

- **Lower bound** obtained is at least as strong as one from conventional Lagrangean decomposition or LP relaxation of (R)

- Alternative decomposition schemes can be used to generate more cuts to add to relaxation (R)
Proposed Algorithm

- Variant of **Outer-Approximation** (Duran and Grossmann, 1986)

- Preprocessing

- Bound Contraction (optional)

- Solve **Lower Bounding** Problem

 - Add Integer Cuts

 - No

 - Yes: $UB - LB \leq \text{tolerance}$?

- Solve **Upper Bounding** Problem

 - Includes cutting plane generation

- STOP
 - Solution = UB
Illustrative Example

3 Supply streams – 6 Storage Tanks – 4 Charging Tanks – 3 Distillation units

Scheduling Horizon

<table>
<thead>
<tr>
<th>Number of supply streams</th>
<th>15 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arrival Time</td>
<td>Incoming Volume of crude</td>
</tr>
<tr>
<td>IN1</td>
<td>1</td>
</tr>
<tr>
<td>IN2</td>
<td>6</td>
</tr>
<tr>
<td>IN3</td>
<td>11</td>
</tr>
</tbody>
</table>

Number of Charging Tanks

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Initial Inventory</th>
<th>Initial Fraction of key component (min – max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank1</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>Tank2</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>Tank3</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>Tank4</td>
<td>80</td>
<td>30</td>
</tr>
</tbody>
</table>

Number of Storage Tanks

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Initial Inventory</th>
<th>Initial fraction of key component (min – max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank1</td>
<td>10 – 90</td>
<td>60</td>
</tr>
<tr>
<td>Tank2</td>
<td>10 – 110</td>
<td>10</td>
</tr>
<tr>
<td>Tank3</td>
<td>10 – 110</td>
<td>50</td>
</tr>
<tr>
<td>Tank4</td>
<td>10 – 110</td>
<td>40</td>
</tr>
<tr>
<td>Tank5</td>
<td>10 – 90</td>
<td>30</td>
</tr>
<tr>
<td>Tank6</td>
<td>10 – 90</td>
<td>60</td>
</tr>
</tbody>
</table>

Number of CDUs: 3

- Waiting cost for supply streams (C_{sea}): 5
- Unloading cost for supply streams (C_{unload}): 7
- Tank inventory costs ($C_{inv(b)}$): storage tanks – 0.05, charging tanks – 0.06
- Changeover cost for charged oil switch (C_{set}): 30
- Demand of mixed oils by CDUs: oil mix 1 60, oil mix 2 60, oil mix 3 60, oil mix 4 60

Bounds on flowrates in the streams: Lower Bound: 1, Upper Bound: 40
Optimal Crude Flow Schedule

Gantt chart of optimal schedule

Crude vessel to storage tanks

Start time of crude unloading

Crude transfers between storage and charging tanks
Optimal Crude Flow Schedule

Gantt chart of optimal schedule

Charging schedule for distillation units

- **CDU1 being Charged**
- **CDU2 being Charged**
- **CDU3 being Charged**
Computational Results

Original MINLP model (P)

<table>
<thead>
<tr>
<th>Example</th>
<th>Number of Binary Variables</th>
<th>Number of Continuous Variables</th>
<th>Number of Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48</td>
<td>300</td>
<td>946</td>
</tr>
<tr>
<td>2</td>
<td>42</td>
<td>330</td>
<td>994</td>
</tr>
<tr>
<td>3</td>
<td>57</td>
<td>381</td>
<td>1167</td>
</tr>
</tbody>
</table>

3 Supply streams – 3 Storage tanks – 3 Charging tanks – 2 Distillation units

3 Supply streams – 3 Storage tanks – 3 Charging tanks – 2 Distillation units

3 Supply streams – 6 Storage tanks – 4 Charging tanks – 3 Distillation units

Solvers:
- **MILP** → CPLEX 9.0
- **NLP** → BARON 7.2.5 (Sahinidis, 1996)

<table>
<thead>
<tr>
<th>Example</th>
<th>Lower bound [obtained by solving relaxation (RP)] ({z^{RP}})</th>
<th>Upper bound [on solving (P-NLP) using BARON] ({z^{P,NLP}})</th>
<th>Relaxation gap (%)</th>
<th>Total time taken for one iteration of algorithm* (CPUsecs)</th>
<th>Local optimum (using DICOPT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>281.14</td>
<td>282.19</td>
<td>0.37</td>
<td>827.7</td>
<td>291.93</td>
</tr>
<tr>
<td>2</td>
<td>351.32</td>
<td>359.48</td>
<td>2.27</td>
<td>691.39</td>
<td>361.63</td>
</tr>
<tr>
<td>3</td>
<td>383.69</td>
<td>383.69</td>
<td>0</td>
<td>8928.6</td>
<td>383.69</td>
</tr>
</tbody>
</table>

Solving MILP model (R)

<table>
<thead>
<tr>
<th>Example</th>
<th>Solution ({z^R})</th>
<th>LP relaxation at root node</th>
<th>No. of nodes</th>
<th>Time taken to solve (R)* (CPUsecs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>281.14</td>
<td>-55.24</td>
<td>940800</td>
<td>1953.3</td>
</tr>
<tr>
<td>2</td>
<td>351.32</td>
<td>113.35</td>
<td>931700</td>
<td>14481.7</td>
</tr>
<tr>
<td>3</td>
<td>383.69</td>
<td>147.24</td>
<td>3029600</td>
<td>15874.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Example</th>
<th>Solution ({z^{RP}})</th>
<th>LP relaxation at root node</th>
<th>No. of nodes</th>
<th>Time taken to solve (RP)* (CPU secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>281.14</td>
<td>68.45</td>
<td>334300</td>
<td>758.8</td>
</tr>
<tr>
<td>2</td>
<td>351.32</td>
<td>133.80</td>
<td>310600</td>
<td>5873.2</td>
</tr>
<tr>
<td>3</td>
<td>383.69</td>
<td>189.19</td>
<td>1258100</td>
<td>8025.9</td>
</tr>
</tbody>
</table>

BARON could not guarantee global optimality in more than 10 hours

Pentium IV, 2.8 GHz, 512 MB RAM
Summary

- **New continuous time formulation** used to represent the **scheduling of crude oil** at the **front-end of a refinery**
 - Scheduling model is a **non-convex MINLP**

- **Special Outer-Approximation algorithm** proposed to solve problem to global optimality
 - Main idea: **Generation of cutting planes** for speeding up solution of MILP relaxation