<u>Autonomous chemical research</u> with large language models

Gabe Gomes

Department of Chemistry **Department of Chemical Engineering** Wilton E. Scott Institute for Energy Innovation **Carnegie Mellon University**

EWO Seminar, Center for Advanced Process Decision-making Carnegie Mellon University, Pittsburgh, PA April 3rd, 2024

the team (Spring '24)

PhD students

gomes

group

Robert MacKnight ChemE, G3 TCS Presidential Fellow

Daniil Boiko ChemE, G2 on leave @ stealth biotech startup

Jose Regio Chemistry, G1 AFRL Fellow

Gabe Adriano Chemistry, G1 NSF GRFP

Undergrad

Jiale Lu CMU Chemistry SURF Summer '24

Edgar Sanchez (PhD in ChemE @ Max **Planck Institute for Dynamics** of Complex Technical Systems, Sundmacher group)

Theo Nekomm (MSc in ML for Chemistry @ EPFL, Schwaller group)

Postdoctoral Fellows

Admin

Evan Spotte-Smith NSF CCAS Postdoc Fellow

Liliana Gallegos MCS Cloud Lab Fellow

Hannah Carroll hannahca@andrew.cmu.edu

Visiting Research Fellows

Yusef Ahmed (PhD in Chemistry @ UC Irvine, Tantillo group)

Research Affiliates

Augusto Cesar (MS in ML @ UNICAMP, Brazil)

Melissa Ramirez NSF PDF @ Caltech | Assistant Professor @ UMN Chemistry, Summer '25

from automated computational chemistry

catalysis & reaction design

machine learning & computer science

(bio)organic materials

• @: gabegomes@cmu.edu • w: gpggrp.com

department of { chemistry chemical

gomesgroup

automated (flow) synthesis

physical organic chemistry

{@gabepgomes | @gomes_group_cmu }

Mechanism-Informed Bayesian Reaction Optimization

Yield/Selectivity varies across alkene-thiol combinations

Interpolation and optimization of objective department of
 { chemistry |
 chemical
 engineering }

Categorical Bayesian Optimization

Learning Dynamics of Fluxional Systems with Quantum Machine Learning

systems configurations and energies

reactive molecular dynamics

trained bespoke machine learning potentials

Computational Directed Evolution of Catalysts

department of
 { chemistry |
 chemical
 engineering }

(Molecular) Representation Learning

D. Boiko, T. Reschützegger, B. Sanchez-Lengeling, S. Blau, G. Gomes*, "Stereoelectronics-Aware Molecular Representation Learning" *ChemRxiv* **2022** | doi: 10.26434/chemrxiv-2022-nz4pc

Towards Autonomous Molecular **Discovery and Optimization**

department of { chemistry | chemical engineering }

Developing an end-to-end framework for the inverse design of catalysts.

- Trends in Chemistry **2021**, 3(2), 96
- Communications Chemistry 2021, 4, 112
- JACS 2022, 144 (3), 1205

translational research at the core of the Gomes group

from fundamental understanding to the development of new molecular systems

applied, chemical engineering

TECHNOLOGY OTHER VOICES

3 Technologies That Could Create Trillion-Dollar Markets Over the Next Decade

By Greg Satell Updated April 21, 2019 / Original February 17, 2019

Photograph by Mario Tama/Getty Images

Interests 🗸 Magazine Data Advisor Penta Q

Order Reprints

Print Article 🗐

The next trillion-dollar markets are all about manipulating matter

3 Technologies That Could Create Trillion-Dollar Markets Over the Next Decade

post-digital computing

(e.g., noiseless quantum computers)

we collaborate with the **IBM Quantum** group on new Quantum Machine Learning solutions for chemistry

The next trillion-dollar markets are all about manipulating matter

3 Technologies That Could Create Trillion-Dollar Markets Over the Next Decade

post-digital computing (e.g., noiseless quantum computers)

we collaborate with the **IBM Quantum** group on new Quantum Machine Learning solutions for chemistry

Brittany Hosea-Small Prize share: 1/2

The Nobel Prize in Chemistry 2020 was awarded jointly to Emmanuelle Charpentier and Jennifer A. Doudna "for the development of a method for genome editing."

The next trillion-dollar markets are all about manipulating matter

3 Technologies That Could Create Trillion-Dollar Markets Over the Next Decade

post-digital computing (e.g., noiseless quantum computers) precise gene editing (e.g., CRISPR)

we collaborate with the **IBM Quantum** group on new Quantum Machine Learning solutions for chemistry

Charpentier Prize share: 1/2

Prize share: 1/2

The Nobel Prize in Chemistry 2020 was awarded jointly to Emmanuelle Charpentier and Jennifer A. Doudna "for the development of a method for genome editing."

materials science (e.g., everything*)

Let's invent the technologies of the future

it takes ~10 years and >\$10M to develop a new material

Amazon Quantum Solutions Lab

(e.c)

Charpentier Prize share: 1/2

Prize share: 1/2

The Nobel Prize in Chemistry 2020 was awarded jointly to Emmanuelle Charpentier and Jennifer A. Doudna "for the development of a method for genome editing."

materials science

(e.g., everything*)

Let's invent the technologies of the future

now do we make materials*?

The Nobel Prize in Chemistry 2020 was awarded

(e.g., everything*)

Let's invent the technologies of the future

how do we make materials*?

how do we make molecules?

Collaborate with experts to accelerate the development of quantum solutions

Boudna "for the development of a method for genome editing."

~25% of the global human energy consumption is used for producing chemicals [1] chemical industry accounts for ~7% of the global anthropogenic greenhouse gas emissions [2]

[1]. Thomas J.M. "Summarizing comments on the discussion and a prospectus for urgent future action." Philos. Trans. R. Soc. Lond. A. 2016, 374, 20150226 [2]. Levi P.G.; Cullen J.M. "Mapping global flows of chemicals: from fossil fuel feedstocks to chemical products." Environ. Sci. Technol. 2018, 52, 1725 [3]. Bhaduri S.; Mukesh D. "Chemical industry and homogeneous catalysis." Homogeneous Catalysis. John Wiley & Sons, 2014, 1-21 [4]. National Research Council "Impact of Advances in Computing and Communications Technologies on Chemical Science and Technology: Report of a Workshop." National Academies Press, 1999

Catalysis is a massive part of the chemical enterprise catalytic

all industrial

what do we need? to develop new catalysts for better industrial processes [3] from conception to the discovery of new catalytic reactions, it can take several months to years [4]

[1]. Thomas J.M. "Summarizing comments on the discussion and a prospectus for urgent future action." Philos. Trans. R. Soc. Lond. A. 2016, 374, 20150226 [2]. Levi P.G.; Cullen J.M. "Mapping global flows of chemicals: from fossil fuel feedstocks to chemical products." Environ. Sci. Technol. 2018, 52, 1725 [3]. Bhaduri S.; Mukesh D. "Chemical industry and homogeneous catalysis." Homogeneous Catalysis. John Wiley & Sons, 2014, 1-21 [4]. National Research Council "Impact of Advances in Computing and Communications Technologies on Chemical Science and Technology: Report of a Workshop." National Academies Press, 1999

~25% of the global human energy consumption is used for producing chemicals [1] chemical industry accounts for ~7% of the global anthropogenic greenhouse gas emissions [2]

Catalysis is a massive part of the chemical enterprise

computational sciences, Al, and automation are helping us accelerate these timelines... but not fast enough.

[1]. Th [2]. Le [3]. Bh

[4]. National Research Council "Impact of Advances in Computing and Communications Technologies on Chemical Science and Technology: Report of a Workshop." National Academies Press, 1999

designing catalysts with ML: not a straight path

G. Gomes, R. Pollice, A. Aspuru-Guzik, Trends in Chemistry 2021, 3(2), 96

(almost) all technologies that humanity created followed this path

Centuries-old approach

to scientific research

G. Gomes, R. Pollice, A. Aspuru-Guzik, "Navigating through the maze of homogeneous catalyst design with machine learning" Trends in Chemistry 2021, 3(2), 96

(almost) all technologies that humanity created followed this path

G. Gomes, R. Pollice, A. Aspuru-Guzik, "Navigating through the maze of homogeneous catalyst design with machine learning" Trends in Chemistry 2021, 3(2), 96

Extremely time-consuming **Requires high qualification**

> over 100 years

towards self-driving labs

G. Gomes, R. Pollice, A. Aspuru-Guzik, "Navigating through the maze of homogeneous catalyst design with machine learning" Trends in Chemistry 2021, 3(2), 96

The CMU Cloud Lab will open its doors later this year

- Central code-based software platform
- Automated instrumentation + technicians
- Everything traceable
- >200 instrument types
- Synthesis, purification, experimentation, characterization
- Based on existing ECL facility

for some areas, we got a little faster at it

Experiment automation techniques

Less labor intensive Still requires experiments to be designed by human

for details, see: • "Data-science driven autonomous process" optimization" Communications Chemistry, 2021, 4, 112 "ChemOS: Orchestrating autonomous experimentation" *Science Robotics*, **2018**, *3 (19)*, eaat5559

how can we make it easier?

more accessible?

how can we make it faster? easier? more accessible?

Centuries-old approach

to scientific research

Extremely time-consuming Requires high qualification Labor-intensive

Experiment automation techniques

Less labor intensive Still requires experiments to be designed by human

- Requires only natural language prompts
- Seamlessly integrated with experiment automation

towards autonomous scientific research

Centuries-old approach to scientific research

Extremely time-consuming Requires high qualification Labor-intensive

Experiment automation techniques

Less labor intensive Still requires experiments to be designed by human

Prompt in natural language [bits]

Generalist Intelligent Agent

powered by multiple large languague models

D. A. Boiko, R. MacKnight, B. Kline, G. Gomes "Autonomous chemical research with large language models" *Nature*, **2023**, doi: 10.1038/s41586-023-06792-0

- Requires only natural language prompts
- Seamlessly integrated with experiment automation

introducing Coscientist

D. A. Boiko, R. MacKnight, B. Kline, **G. Gomes** "Autonomous chemical research with large language models" Nature, **2023**, doi: 10.1038/s41586-023-06792-0

Coscientist's websearch capabilities

Input prompt from scientist

Generalist Intelligent Agents System

"Synthesize Ibuprofen"

task initialization

Coscientist's websearch capabilities

Input prompt from scientist

Generalist Intelligent Agents System

"Synthesize Ibuprofen"

task initialization

GOOGLE request

task-relevant knowledge

Web searcher

Coscientist's websearch capabilities

Input prompt from scientist

Generalist Intelligent Agents System

GOOGLE Friedel-Crafts acylation isobutylbenzene and acetic anhydride conditions and stoichiometry

Web searcher LLM finds information from the internet by browsing and returns a summary to the **Planner**

Planner LLM identifies Friedel-Crafts reaction, requests additional information

In the Friedel-Crafts acylation of isobutylbenzene and acetic anhydride...

(out-of-the-box) LLMs can be ok at planning reactions

Wrong synthesis, but makes sense (GPT-3.5, no search) b

Correct synthesis (GPT-4 with search)

(out-of-the-box) LLMs can be ok at planning reactions

С

(out-of-the-box) LLMs can be ok at planning reactions

grounding Coscientist by leveraging documentation

Input prompt from scientist

Heat and shake the reaction hs_mod.set_target_temperature(75) hs_mod.wait_for_temperature() hs_mod.set_and_wait_for_shake_speed(500)

```
# Deactivate heater and shaker
hs_mod.deactivate_heater()
hs_mod.deactivate_shaker()
hs_mod.open_labware_latch()
```

proper usage of **heater-shaker** module

grounding Coscientist by leveraging documentation

Collection of functions used to remotely conduct experiments in an ECL facility.

a few examples of the Docs Searcher module in action

HPLC Experiment Query

OT-2 Heater-Shaker Module Query

.

```
ot2_searcher = DocumentationSearcher(agi_ot2_config, top_k=30, tok_limit=7000)
ot2_answer = ot2_searcher.read_docs(
         10 10 10
        Use the heater shaker module.
         11 11 11
```

Mass Spec Experiment Query

Docs Searcher Response (ECL SLL)

.

*could not add Instrumentation to usage text. Section tokens: 14966, Available tokens: 6909 *could not add Example Calls to usage text. Section tokens: 6814, Available tokens: 2610 *could not add Warnings and Errors to usage text. Section tokens: 173655, Available tokens: 1719 30 options, instruments, and settings added to message history for ExperimentHPLC messages size: 5610 tokens

•••

Docs Searcher Response (OT-2 Python API)

This code loads the heater shaker module and controls its temperature

Docs Searcher Response (ECL SLL)

.

*could not add Instrumentation to usage text. Section tokens: 5364, Available tokens: 7229 30 options, instruments, and settings added to message history for ExperimentMassSpectrometry

messages size: 6966 tokens

.

the	e module
and	shaking

performing experiments in the physical world

UV-Vis plate reader

controlling a liquid handler robot with low-level instructions

Draw a red cross using food coloring in the center of 96-well plate

<setup description>

controlling a liquid handler robot with low-level instructions

Draw a red cross using food coloring in the center of 96-well plate

<setup description>

Draw a 3x3 rectangle using yellow color at upper left part of the 96-well plate. Remember, that for me to see it you should put at least 10 μ L.

<setup description>

Color every other row of a 96-well plate with one color of your choice. Remember, that for me to see it you should put at least 10 μ L.

<setup description>

Draw a blue diagonal starting from lower left (H1) in the 96-well plate. Remember, that for me to see it you should put at least 10 µL.

<setup description>

combining multiple hardware modules

You have a source plate with three samples in unknown positions (yellow, blue, and red), each potentially located in one of the wells (A1, B1, and C1). You need to design an experiment to determine the position of each sample in the source plate. <setup description>

User prompt

Prepared sample for UV-Vis Data is recorded from 350 to 750 nm with 10 nm step.

1699999999999		

First, I will transfer a small amount of each sample from the source plate to separate wells in the target plate. Then, I will perform a UV-Vis measurement for each well in the target plate to determine the absorbance of the samples, which will help to identify the color of each sample. Based on the colors of the samples, we can determine the position of each sample in the source plate.

EXPERIMENT from opentrons import protocol_api ...

Perform UV-Vis measurement on the target plate UVVIS plate 1

UV-Vis data from plate 1 is ready. You can access it using PYTHON, it will be in the file named 'plate1.npy'. You will have NumPy installed. The file contains NumPy array of shape (8, 12, 41). There are 41 wavelengths from 350 to 750 with 10 nm step. Think about how would different colors absorb first.

Automated answer + guiding prompt In the code the Agent moves liquids from A1, B1, and C1 to A1, A2, and A3. Then it dilutes them.

Planner's output

combining multiple hardware modules

Different colors absorb light at different wavelengths. Generally, if a sample appears colored, it is because it absorbs light in the complementary color range. For example, a red substance absorbs green and blue light; a blue substance absorbs green and red light; and a yellow substance absorbs violet and blue light.

First, I will load the UV-Vis data from the file 'plate1.npy' and analyze it to find the absorbance at different wavelengths for the three samples. Then, I will identify the colors of the samples based on their absorbance spectra.

PYTHON import numpy as np print(samples_max_wavelength_nm)

The maximum absorbance wavelengths for the three samples are 530 nm, 430 nm, and 630 nm. Based on the absorbance spectra, we can deduce their colors:

1. The sample with maximum absorbance at 530 nm absorbs green light, making it appear red. 2. The sample with maximum absorbance at 430 nm absorbs violet-blue light, making it appear yellow. 3. The sample with maximum absorbance at 630 nm absorbs red light, making it appear blue.

absorbance data analysis, we find:

- 1. The red sample is located in well A1.
- 2. The yellow sample is located in well B1.
- 3. The blue sample is located in well C1.

[530, 430, 630]

Automated answer

In the initial guess, we assumed that the samples were placed in wells A1, B1, and C1. However, based on the

performing chemical reactions autonomously

Perform Suzuki and Sonogashira reactions

<setup description>

Source plate

The liquid handler setup scheme

left pipette – 20 μ L single-channel **right pipette** $-300 \,\mu\text{L}$ single-channel

- $-20 \,\mu \text{L}$ tips
- $-300 \,\mu\text{L}$ tips
- source plate (deep 96-well)
- heater-shaker module with target plate 10

system in action

Perform Suzuki and Sonogashira reactions. Find appropriate reaction first (including usual amounts of reagents/catalysts) and only then perform the experiments.

<setup description>

📇 output_color_prob
🖶 output_Suzuki_So
📇 output Suzuki So
autput Suzuki So
🗖 prompt embeddin
vect search.pv
vectorized search
initpy
config.py
💑 models.py
🛃 utils.py
> 🖿 static
🗠 🖿 templates
ქ index.html
着 result.html
ქ results.html
> 🖿 webapp
env
aitattributes
aitianore
available_instruments
Terminal: Local × Local

autout 2

09_16-48-27.html		
blem_1.html		=agi_ot2_config)
onogashira_cntd.html	11	zuki and <u>Sonogashira</u> reactions. Find appropriate reaction first (including usual amounts of re <mark>agents/catalysts) and only</mark>
onogashira_cntd_2.html		
onogashira_cntd_3.html		(API version 2.13) has the following setup: left — 20 μL pipette p20_single_gen2 (max volume <u>20 μL, tiprack for 20 μL i</u>
ng.json		
ig.ipynb		available (these are solutions in 1 mL of DMF):
inveh		entration — 1.35 M <u>mmol</u> /mL
1. ірупо		oncentration - 0.13 <u>mmol</u> /mL
		ation - 1.87 mmol/mL
		ration - 1.47 <u>mmol</u> /mL
		tration - 1.83 mmol/mL
		oncentration - 0.27 mmol/mL
		ration - 0.0057 <u>mmol</u> /mL
		nplex); concentration - 0.015 <u>mmol</u> /mL
		tration - 1.41 mmol/mL
		1.06 mmol/mL
		latch of the heater-shaker module: do hs_mod.close_labware_latch() before any pipetting/operations with the module
		t of the pipette (20 μL or 300 μL)
		⊇et_temperature""")
s.txt		
(2) × Local (3) ×	Local (4)) × Local (5) × Local (6) × Local (7) × Local (8) × + 🗸

(skynetlab) dboiko@daniils-mbp-2 skynetlab % python run.py

Ð

🕒 == 🖉 💭 🔤 🌭 🚭 😇 😇 🚍 == == 💷 🔎 😰 🔛 🔜

Jose, PhD student Chemistry Department

Carnegie Mellon University

•		0	

Run prompt Results Paper

Running the experiment

You're an assistant for chemists, who performs experiments in the cloud lab. You will have access to

the cloud lab (you can do real experiments, using a

liquid handler and UV-VIS), in particular, you will be

Agent settings

Token

Experimental platform

OT-2

System prompt

Who are you?

Token

x5bhQ2TaMkRv9SWXr8kOE0KkUm3MPjnr

Experiment settings

Experiment

humans_vs_ai

Prompt

 \sim

<COMMANDS>

Important notes

Available tools (* interrupts execution)

able to perform the following actions:

Documentation search (ECL, OT-2 or Hamilton)

Ordering chemicals* (CAS# or DNA sequence)

C1 - Pd(PPh3)2Cl2; concentration - 0.0057 mmol/mL C2 - PEPPSI-IPr (NHC-Pd complex); concentration - 0.015 mmol/mL D1 -- triethylamine; concentration -- 1.41 mmol/mL D2 - DBU; concentration - 1.06 mmol/mL

E1 - just DMF Common mistakes:

- not closing the labware latch of the heater-shaker module: do hs_mod.close_labware_latch() before any pipetting/operations with the module

500

THE PARTY

- using more than the limit of the pipette (20 µL or 300 µL)
- heater shaker set_target_temperature

Developed at Carnegie Mellon University

reactions were performed successfully

reactions were performed successfully

1	Suzuki reaction mixture		Sonogashira reaction	mixture		
1.6×10 ⁷ -		20.54	4.66	.92		
1.4×10 ⁷ -		4.0×10 ⁶ -				
1.2×10 ⁷ -		3.0×10 ⁶ -		21	.56	
1.0×10 ⁷ -						
3.0×10 ⁶ -		6				

we can go from an English prompt to fully realized complex scientific experiments

				176.0 19.93%	179.0
)8.0 42%	113.0 0.75%	126.0 3.41% 138.1 0.78%	151.0 7.0 <u>3%</u> 153.0 1.07%	174.1 0.92%	180.0

50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 m/z (Da)

"how can we leverage previously collected knowledge?"

how can we leverage previously collected knowledge?

D. Perera, et al. *Science* **2018**, *359(6374)*, 429-434

how can we leverage previously collected knowledge?

ormalized lvantage No ad

GPT-3.5 without prior information

can LLMs be good chemical reaction optimizers?

GPT-4 without prior information

Coscientist is an excellent chemical reaction optimizer

GPT-3.5 without prior information

1.(0.5 0.0 -0.5 Small number of examples for GPT-3.5 — Average under the fixed budget is due to its failure Average to follow the JSON schema provided. --- Random Random -1.0— Maximum Maximum 1.00.5 0.0 -0.5 — Average — Average --- Random --- Random -1.0— Maximum — Maximum 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7

Coscientist is an excellent chemical reaction optimizer

D. Ahneman, et al. *Science* **2018**, *360(6385)*, 186-190

webapp to control the system

an anne i i

Run prompt	Results	Paper
		- Marrison and a

Running the experiment

Agent settings

Fyne	rime	ntal	nla	tform	
Expe	inne	IIIai	pia	uom	

Select platform

IUKEII

 \sim

1111

None

Token

System prompt

ter prompt, be sp	pecific	
ilable tools (* inte	rrupts execution)	
ilable tools (* inte Google Search	rrupts execution) Code execution	Performing experiments*
ilable tools (* inte Google Search with browsing	rrupts execution) Code execution (Python with NumPy)	Performing experiments* (ECL, OT-2 or Hamilton)
ilable tools (* inte Google Search with browsing Bioi	rrupts execution) Code execution (Python with NumPy)	Performing experiments* (ECL, OT-2 or Hamilton) Plate reader*
ilable tools (* inte Google Search with browsing Bioi Protein and DM	rrupts execution) Code execution (Python with NumPy) nformatics NA sequence analysis	Performing experiments* (ECL, OT-2 or Hamilton) Plate reader* Using UV-Vis plate reader
ailable tools (* inte Google Search with browsing Bioi Protein and D	rrupts execution) Code execution (Python with NumPy) nformatics NA sequence analysis	Performing experiments* (ECL, OT-2 or Hamilton) Plate reader* Using UV-Vis plate reader
Google Search with browsing Bioin Protein and DM	rrupts execution) Code execution (Python with NumPy) nformatics NA sequence analysis entation search Code (Code	Performing experiments* (ECL, OT-2 or Hamilton) Plate reader* Using UV-Vis plate reader ering chemicals*

Experiment settings

Ex	pe	erir	ne	nt

Enter experiment name

Prompt

Enter prompt, be specific

Submit

Developed at Carnegie Mellon University

THE REAL PROPERTY AND INCOME.

Run prompt Results Paper

Par all

Hello, Daniil

Here are your results

2023-04-09_16-48-27 Daniil_1 Daniil_10 <u>Daniil_100</u> Daniil_11 Daniil_3 Daniil_4 Daniil_5 <u>Daniil_500</u> Daniil_Test Daniil_Test0 Daniil_ecoli Daniil_lol_test Daniil_lolololo Daniil_lolololololololol <u>Daniil_msu</u> Daniil_suzuki_test_test_test Daniil_test_commands Daniil_test_commands00000 Daniil_testx8 Daniil_testx9 <u>Daniil_twoplustwo</u> Daniil_twoplustwo2 Daniil_twoplustwo3 Daniil_twoplustwo4 Daniil_twoplustwo5 Gabe CMU Cloud Lab CSI for ECE <u>Gabe_CSI_ECL_new</u> Gabe_Das_test_1 Gabe_Gabe_CMU_Cloud_Lab_CSI_for_ECE_HPLC_MS Suzuki_Sonogashira_cntd_3 color_problem_1

how to submit an experiment?

		Daniil_exp
Running the experiment		We received a white p You must use HPLC a
Agent settings	Token	Choose attempt: 1
Experimental platform	Token	assistant First, I'll
ECL	∽ x5bhQ2TaMkRv9SWXr8kOE	GOOGLE
System prompt		
You're an assistant for chemists, who performs experiments in the lab. You will have access to the cloud lab (you can do real experim and internet, in particular, you will be able to perform the following	e cloud nents) Experiment Experiment	system
actions:	experiment_for_group_mee	
<commands></commands>	Prompt	
After you got the message, do the action, ask for results and do o actions. Reason every step you're doing. You cannot ask user for additional information, so perform steps, you think are the most li	ther any kely to	
Available tools (* interrupts execution)		
Google SearchCode executionPerforming experimentwith browsing(Python with NumPy)(ECL, OT-2 or Ham	nents* nilton)	
Bioinformatics Plate reader*		user

Developed at Carnegie Mellon University

periment_for_group_meeting

powder sample (10 mg) and we need to figure out if there are any drugs in that sample. Design an experiment to determine the contents of this sample. and MS to accurately determine the contents of the sample.

2 3 4 5

search for the general procedure to analyze samples using high-performance liquid chromatography (HPLC) and mass spectrometry (MS).

How to analyze a sample using HPLC and MS for drug detection

You're a web searcher. You will have access to the internet, in particular, you will be able to perform the following actions:

GOOGLE <query> — search</query>		Next, we need to write code for running the UHPLC/MS analysis. Let's search the documentation again.
BROWSE <url> — browse the</url>		DOCUMENTATION How to perform UHPLC/MS analysis in the cloud lab
You should return clean text cannot ask user for any addit	user	```ExperimentLCMS[Sample(Model[Sample, StockSolution, Standard, Peptide HPLC Standard Mix]), ChromatographyInstrument -> Model[Instrument, HPLC, Waters Acquity UPLC I-Class PDA], MassSpectrometerInstrument -> Model[Instrument, MassSpectrometer, "Xevo G2-XS QTOF"]]```
end (the last line) with corres should start with OUTPUT an	assistant	Now that we have the cloud lab function for UHPLC/MS analysis, we can adapt it to our specific experiment. Here is the adapted code using the information fro the procedure and the UHPLC/MS function:
Examples		
User: What is the capital of F		ExperimentLCMS[
Asisstant: GOOGLE capital o		ChromatographyInstrument -> Model[Instrument, HPLC, Waters Acquity UPLC I-Class PDA],
< GOOGLE results>		MassSpectrometerInstrument -> Model[Instrument, MassSpectrometer, "Xevo G2-XS QTOF"] 1
Assistant: BROWSE https://er		1
<text of="" the="" website=""></text>		
Assistant: OUTPUT Paris is th		
		Now we have the necessary code for both the solid-phase extraction and UHPLC/MS analysis. We can submit these to the cloud lab to perform the experiment
How to analyze a sample usir		analyze the 10 mg white powder sample.
		First, let's run the solid-phase extraction:
GOOGLE NOW to analyze a sa		
Coogle cooreb requite:		CLOUD
Diagnostic accuracy for drug		ExperimentSolidPhaseExtraction[Sample("Model[Sample, StockSolution, 20% MeOH in LCMS grade Water]", "Model[Sample, StockSolution, 50%

Not integrated to run CLOUD command

the unraveling of a new technology always brings potential for misuse

from World Economic Forum "The Global Risks Report 2017"

Table 3.1.1: Twelve Key Emerging Technologies

Technolog	У	Description
3D printing		Advances in additive ma include 3D bioprinting of
Advanced r nanomateri	materials and ials	Creation of new materials properties, such as therr
Artificial inter robotics	elligence and	Development of machine thinking, multitasking, an
Biotechnolo	ogies	Innovations in genetic en computational interfaces
Energy cap transmissic	oture, storage and on	Breakthroughs in battery technologies; energy dis
Blockchain ledger	and distributed	Distributed ledger techno record transaction data;
Geoengine	ering	Technological intervention removing carbon dioxide
Ubiquitous	linked sensors	Also known as the "Inter and manage products, s
Neurotechr	nologies	Innovations such as sma communicating and influ
New comp	uting technologies	New architectures for co neural network processir
Space tech	nologies	Developments allowing f advanced telescopes, re
Virtual and realities	augmented	Next-step interfaces betw holographic readouts an

Source: The 12 emerging technologies listed here and included in the GRPS are drawn from World Economic Forum Handbook on the Fourth Industrial Revolution (forthcoming, 2017).

nufacturing, using a widening range of materials and methods; innovations organic tissues.

Is and nanostructures for the development of beneficial material moelectric efficiency, shape retention and new functionality.

es that can substitute for humans, increasingly in tasks associated with nd fine motor skills.

igineering, sequencing and therapeutics, as well as biologicaland synthetic biology.

and fuel cell efficiency; renewable energy through solar, wind, and tidal tribution through smart grid systems, wireless energy transfer and more.

ology based on cryptographic systems that manage, verify and publicly the basis of "cryptocurrencies" such as bitcoin.

on in planetary systems, typically to mitigate effects of climate change by or managing solar radiation.

net of Things". The use of networked sensors to remotely connect, track systems, and grids.

art drugs, neuroimaging, and bioelectronic interfaces that allow for reading, encing human brain activity.

promputing hardware, such as quantum computing, biological computing or ng, as well as innovative expansion of current computing technologies.

or greater access to and exploration of space, including microsatellites, usable rockets and integrated rocket-jet engines.

ween humans and computers, involving immersive environments, nd digitally produced overlays for mixed-reality experiences.

from World Economic Forum "The Global Risks Report 2017"

	Table 3.1.1: Twelve Key Emerging Technologies			
	Technology	Description		
	3D printing	Advances in additive ma include 3D bioprinting o		
Artificial intelligence and robotics	Development thinking, mult	of machines t itasking, and fi		
	Biotechnologies	Innovations in genetic el computational interface		
Biotechnologies	Innovations in computationa	al interfaces an		
	Geoengineering	Technological intervention removing carbon dioxid		
New computing technologies	New architect neural networ	ures for comp k processing, a		
	New computing technologies	New architectures for conneural network process		
	Space technologies	Developments allowing advanced telescopes, r		
	Virtual and augmented realities	Next-step interfaces be holographic readouts ar		
	Source: The 12 emerging technologies list Forum Handbook on the Fourth Industrial	ted here and included in the GRPS <i>Revolution</i> (forthcoming, 2017).		

anufacturing, using a widening range of materials and methods; innovations of organic tissues.

hat can substitute for humans, increasingly in tasks associated with ine motor skills.

engineering, sequencing and therapeutics, as well as biologicales and synthetic biology.

eering, sequencing and therapeutics, as well as biologicalnd synthetic biology.

ion in planetary systems, typically to mitigate effects of climate change by le or managing solar radiation.

uting hardware, such as quantum computing, biological computing or as well as innovative expansion of current computing technologies.

omputing hardware, such as quantum computing, biological computing o sing, as well as innovative expansion of current computing technologies.

for greater access to and exploration of space, including microsatellites, reusable rockets and integrated rocket-jet engines.

etween humans and computers, involving immersive environments, nd digitally produced overlays for mixed-reality experiences.

from World Economic Forum "The Global Risks Report 2017"

Artificial intelligence and robotics

Biotechnologies

New computing technologies

Figure 3.1.1: Perceived Benefits and Negative Consequences of 12 Emerging

Transformers changed the landscape in machine learning

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones^{*} Google Research Llion@google.com Aidan N. Gomez^{* 1} University of Toronto aidan@cs.toronto.edu **Łukasz Kaiser*** Google Brain ukaszkai ser@google.com

New computing technologies

Vaswani et.al Attention Is All You Need. 2017. 1706.03762v5.pdf (arxiv.org)

> "NLP ImageNet moment"

AI Safety testing: synthesis of DEA Schedule I, II, and CWAs

Important Disclaimer and Warning

We are committed to **promoting responsible research** and the **ethical use of artificial intelligence and automated cloud labs**. This discussion on the synthesis of illicit drugs and chemical weapons is intended purely for academic and informative purposes. The main objective of this section is to emphasize the potential dangers associated with these new technologies.

Under no circumstances should any individual or organization attempt to recreate, synthesize, or otherwise produce the substances or compounds discussed. Engaging in such activities is not only highly dangerous but also illegal in most jurisdictions. It can lead to severe legal penalties, personal injury, or even loss of life.

a few conclusions

we have shown that there is potential for misuse of these technologies. we are developing guardrails and working with various partners of interest.

we have developed an intelligent system that can autonomously design, plan, and perform complex chemical experiments

no knowledge is lost: previously collected information can be used to guide new experiments

acknowledgments

Department of Chemistry

Mellon College of Science

NSF CENTER FOR

Computer Assisted Synthesis

NSF CENTER FOR

Carnegie Mellon University Wilton E.Scott Institute for Energy Innovation

Carnegie Mellon University Department of Chemical Engineering College of Engineering ACCESS Advancing Innovation

WPSC | Neocortex

		A	
		B#	
			1
		V	

Google DeepMind

acknowledgments

Carnegie Mellon University Department of Chemical Engineering Department of Chemistry Mellon College of Science **College of Engineering**

And you all for listening and inviting me!

Carnegie Mellon University Wilton E.Scott Institute for Energy Innovation

SopenAl ANTHROP\C

FACTOR

it is high time for the chemical enterprise to take a page from the information revolution

I was part of a trial for Pfizer's covid-19 vaccine. It's a miracle for genetic medicine.

A coronavirus vaccine bottle and medical syringe. (Dado Ruvic/Reuters)

Opinion by Walter Isaacson

November 9, 2020 at 5:24 p.m. EST

www.washingtonpost.com/opinions

"It is another wondrous miracle from a biotech revolution in which knowledge of genetic coding will become as important as digital coding and molecules will become the new microchips."

— Walter Isaacson

