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Learning Dynamics of Fluxional Systems  
with Quantum Machine Learning 
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(Molecular) Representation Learning

7

D. Boiko, T. Reschützegger, B. Sanchez-Lengeling, S. Blau, G. Gomes*, ”Stereoelectronics-Aware Molecular Representation Learning”  
ChemRxiv 2022 | doi: 10.26434/chemrxiv-2022-nz4pc

in collaboration with:



Developing an end-to-end 
framework for the inverse 

design of catalysts.

• Trends in Chemistry 2021, 3(2), 96 
• Communications Chemistry 2021, 4, 112 
• JACS 2022, 144 (3), 1205

Towards Autonomous Molecular  
Discovery and Optimization
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from fundamental understanding to the development of new molecular systems

translational research at the core of the Gomes group
the gomes group  
research pillars

fundamental, molecular  
chemistry and catalysis research

applied, chemical engineering 
and materials research

machine learning
& computer science

physical 
organic chemistry

organic
materials
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catalysis &
reaction design

Nature Communications 2017, 8, 166 
with IBM Research, CA
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The next trillion-dollar markets are all about manipulating matter

post-digital computing  
(e.g., noiseless quantum computers)

we collaborate with the  
IBM Quantum group on  

new Quantum Machine Learning  
solutions for chemistry
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The next trillion-dollar markets are all about manipulating matter

precise gene editing 
(e.g., CRISPR)

post-digital computing  
(e.g., noiseless quantum computers)

we collaborate with the  
IBM Quantum group on  

new Quantum Machine Learning  
solutions for chemistry

materials science 
(e.g., everything*)

*: materials, drugs, energy, transistors, devices…
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Let’s invent the technologies of the future

precise gene editing 
(e.g., CRISPR)

post-digital computing  
(e.g., noiseless quantum computers)

*: materials, drugs, energy, transistors, devices…

materials science 
(e.g., everything*)

it takes ~10 years and 
>$10M to develop  

a new material
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Let’s invent the technologies of the future

precise gene editing 
(e.g., CRISPR)

post-digital computing  
(e.g., noiseless quantum computers)

*: materials, drugs, energy, transistors, devices…

materials science 
(e.g., everything*)

it takes ~10 years and 
>$10M to develop  

a new material
how do we  

make materials*?
how do we  

make molecules?



by 2050 [2]: 
• projected increase in demand of 180% 
• a total 30% reduction of absolute CO2 

emissions in the chemical industry

15%
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all industrial  
processes

catalytic
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catalytic  
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[1]. Thomas J.M. “Summarizing comments on the discussion and a prospectus for urgent future action.” Philos. Trans. R. Soc. Lond. A. 2016, 374, 20150226
[2]. Levi P.G.; Cullen J.M. “Mapping global flows of chemicals: from fossil fuel feedstocks to chemical products.” Environ. Sci. Technol. 2018, 52, 1725
[3]. Bhaduri S.; Mukesh D. “Chemical industry and homogeneous catalysis.” Homogeneous Catalysis. John Wiley & Sons, 2014, 1-21
[4]. National Research Council “Impact of Advances in Computing and Communications Technologies on Chemical Science and Technology: Report of a Workshop.” National 
Academies Press, 1999

• ~25% of the global human energy consumption is used for producing chemicals [1] 
• chemical industry accounts for ~7% of the global anthropogenic greenhouse gas emissions [2]

Catalysis is a massive part of the chemical enterprise
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• ~25% of the global human energy consumption is used for producing chemicals [1] 
• chemical industry accounts for ~7% of the global anthropogenic greenhouse gas emissions [2]

Catalysis is a massive part of the chemical enterprise

what do we need? 
•  to develop new catalysts for better industrial processes [3] 👍 
•  from conception to the discovery of new catalytic reactions, it can 

take several months to years [4] 👎👎👎
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• chemical industry accounts for ~7% of the global anthropogenic greenhouse gas emissions [2]

Catalysis is a massive part of the chemical enterprise

what do we need? 
•  to develop new catalysts for better industrial processes [3] 👍 
•  from conception to the discovery of new catalytic reactions, it can 

take several months to years [4] 👎👎👎

computational sciences,  
AI, and automation are  
helping us accelerate  

these timelines… 
but not fast enough!



20G. Gomes, R. Pollice, A. Aspuru-Guzik, Trends in Chemistry 2021, 3(2), 96 

designing catalysts with ML: not a straight path
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the (classic) 
DMTA cycle

(almost) all technologies that humanity created followed this path
Centuries-old approach
to scientific research

Extremely time-consuming
Requires high qualification
Labor-intensive

G. Gomes, R. Pollice, A. Aspuru-Guzik, “Navigating through the maze of homogeneous catalyst design with machine learning” Trends in Chemistry 2021, 3(2), 96 



design
make

analyze

1

2

3

4

the (classic) 
DMTA cycle

(almost) all technologies that humanity created followed this path
Centuries-old approach
to scientific research

Extremely time-consuming
Requires high qualification
Labor-intensive

Centuries-old approach
to scientific research

Extremely time-consuming
Requires high qualification
Labor-intensive

G. Gomes, R. Pollice, A. Aspuru-Guzik, “Navigating through the maze of homogeneous catalyst design with machine learning” Trends in Chemistry 2021, 3(2), 96 

over 100  
years



towards self-driving labs

G. Gomes, R. Pollice, A. Aspuru-Guzik, “Navigating through the maze of homogeneous catalyst design with machine learning” Trends in Chemistry 2021, 3(2), 96 
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The CMU Cloud Lab will open its doors later this  year

•Central code-based software platform 
•Automated instrumentation + technicians 
•Everything traceable 
•>200 instrument types  
•Synthesis, purification, experimentation, 
characterization 
•Based on existing ECL facility 



Less labor intensive
Still requires experiments to
be designed by human

Experiment automation
techniques

for some areas, we got a little faster at it

ChemOS-controlled Chemspeed high-
throughput screening robot optimizing 

a challenging Suzuki-coupling 

for details, see: • “Data-science driven autonomous process 
optimization” Communications Chemistry, 2021, 4, 112

• “ChemOS: Orchestrating autonomous experimentation”
Science Robotics, 2018, 3 (19), eaat5559

Less labor intensive
Still requires experiments to
be designed by human

Experiment automation
techniques

14A collaboration with 
Merck Research & Development
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a challenging Suzuki-coupling 

for details, see: • “Data-science driven autonomous process 
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how can we make it faster?

how can we make it easier?

 more accessible? 



how can we make it faster? easier? more accessible? 

Centuries-old approach
to scientific research

Extremely time-consuming
Requires high qualification
Labor-intensive

Less labor intensive
Still requires experiments to
be designed by human

Experiment automation
techniques Requires only natural language 

prompts
Seamlessly integrated with 
experiment automation

This work:
autonomous scientific research



towards autonomous scientific research

Centuries-old approach
to scientific research

Extremely time-consuming
Requires high qualification
Labor-intensive

Less labor intensive
Still requires experiments to
be designed by human

Experiment automation
techniques Requires only natural language 

prompts
Seamlessly integrated with 
experiment automation

This work:
autonomous scientific research

Prompt in
natural language

Experiments realized
in the physical worldGeneralist Intelligent Agent

[bits] [atoms]powered by multiple large languague models

D. A. Boiko, R. MacKnight, B. Kline, G. Gomes "Autonomous chemical research with large language models"

Nature, 2023, doi: 10.1038/s41586-023-06792-0



introducing Coscientist

a

b

Coscientist

PlannerWeb searcher Automation

Google
Search API

Internet

Docker
container

Performed experiments
to validate the Agent

Hardware API
documentation

Input prompt from scientist

Physical world
hardware

• cloud lab
• liquid handler
• manual experimentation

the module uses LLMsthe module does not use LLMs

GOOGLE EXPERIMENT

PYTHON

Command used by LLM

DOCUMENTATION

Docs searchercode 
submission

BROWSE

GOOGLE

Generating
SLL code for
a cloud lab

Searching for
organic syntheses
online

– Controlling a liquid handler
– Using a liquid handler and
   UV-Vis together

– Performing
   cross-coupling reactions
– Optimizing reaction
   conditions

Docs index
retrieval and

summarizationCode execution

D. A. Boiko, R. MacKnight, B. Kline, G. Gomes "Autonomous chemical research with large language models"

Nature, 2023, doi: 10.1038/s41586-023-06792-0



Coscientist’s websearch capabilities

“Synthesize	Ibuprofen”
task initialization

Generalist Intelligent Agents System
Input prompt from scientist

Planner



GOOGLE request

task-relevant knowledge

“Synthesize	Ibuprofen”
task initialization

Generalist Intelligent Agents System
Input prompt from scientist

Planner

Planner Web searcher

Coscientist’s websearch capabilities



In the Friedel-Crafts acylation of 
isobutylbenzene and acetic anhydride… 

Web searcher LLM finds information from the internet 
by browsing and returns a summary to the Planner

GOOGLE Friedel-Crafts acylation isobutylbenzene 
and acetic anhydride conditions and stoichiometry 

Planner LLM identifies Friedel-Crafts reaction, 
requests additional information

GOOGLE request

task-relevant knowledge

“Synthesize	Ibuprofen”
task initialization

Generalist Intelligent Agents System
Input prompt from scientist

Planner

Planner Web searcher

Coscientist’s websearch capabilities



(out-of-the-box) LLMs can be ok at planning reactions 
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extracted from webpage

planner requested query

Planner

how do I use the
heater-shaker module?

…
::

query

embedding

API docs

embedding

[                ]...

[                ]...

[                ]...

[                ]...

..
.

vector

search

relevant doc selection

‘hardware modules’

further

investigation

proper usage of heater-shaker module

API usage information / Prompt-to-OT-2

OT-2 information-flow back to Planner for downstream task

Input prompt from scientist

Docs searcher

vectorized text with  
ada embeddings

III. Opentrons Python API Implementation - Prompt-to-OT-2

grounding Coscientist by leveraging documentation



provided queries
analyze a complex mixture

to see what is in it

quantify proteins 
in my sample

determine m/z ratio for
compounds in my sample

+

extracted  
from webpage

function

selection

ExperimentHPLC,
ExperimentIonChromatography

ExperimentTotalProteinQuantification,
ExperimentTotalProteinDetection

ExperimentMassSpectrometry,
ExperimentGCMS

Prompt-to-FunctionFunction Guide

further

investigation

planner requested queries

Planner
code

retention
description

summarization
LLM

SLL information-flow back to Planner for downstream task

natural language prompts

API usage information / Prompt-to-SLL

II. Emerald Cloud Labs Implementation - Prompt-to-SLL

Input prompt from scientist

Docs searcher

plain text  
documentation

*not from webpage* 
required extensive work  

from the folks at ECL

grounding Coscientist by leveraging documentation



a few examples of the Docs Searcher module in action
HPLC Experiment Query Docs Searcher Response (ECL SLL)

OT-2 Heater-Shaker Module Query Docs Searcher Response (OT-2 Python API)

Mass Spec Experiment Query Docs Searcher Response (ECL SLL)



performing experiments in the physical world

Planner DOCUMENTATION

PYTHON

UVVIS

Open source 
liquid handling system

Code execution

Docs searcher

UV-Vis plate reader

EXPERIMENT



controlling a liquid handler robot with low-level instructions

Color every other row of
a 96-well plate with one
color of your choice.
Remember, that for me to
see it you should put at
least 10 µL.

<setup description>

Draw a red cross using food
coloring in the center of
96-well plate

<setup description>

Draw a blue diagonal
starting from lower left
(H1) in the 96-well plate.
Remember, that for me to
see it you should put at
least 10 µL.

<setup description>

Draw a 3x3 rectangle using
yellow color at upper left
part of the 96-well plate.
Remember, that for me to
see it you should put at
least 10 µL.

<setup description>



Color every other row of
a 96-well plate with one
color of your choice.
Remember, that for me to
see it you should put at
least 10 µL.

<setup description>

Draw a red cross using food
coloring in the center of
96-well plate

<setup description>

Draw a blue diagonal
starting from lower left
(H1) in the 96-well plate.
Remember, that for me to
see it you should put at
least 10 µL.

<setup description>

Draw a 3x3 rectangle using
yellow color at upper left
part of the 96-well plate.
Remember, that for me to
see it you should put at
least 10 µL.

<setup description>

controlling a liquid handler robot with low-level instructions



combining multiple hardware modules

User prompt

Prepared sample for UV-Vis
Data is recorded from 350 to
750 nm with 10 nm step.

Planner’s output

You have a source plate with three samples in unknown positions (yellow, blue, and red), each potentially 
located in one of the wells (A1, B1, and C1). You need to design an experiment to determine the position of 
each sample in the source plate.    <setup description>

Automated answer
+ guiding prompt

UV-Vis data from plate 1 is ready. You can access it using PYTHON, it will be in the file named 
'plate1.npy'. You will have NumPy installed. The file contains NumPy array of shape (8, 12, 41). There are 
41 wavelengths from 350 to 750 with 10 nm step. Think about how would different colors absorb first.

First, I will transfer a small amount of each sample from the source plate to separate wells in the target 
plate. Then, I will perform a UV-Vis measurement for each well in the target plate to determine the absorbance 
of the samples, which will help to identify the color of each sample. Based on the colors of the samples, we 
can determine the position of each sample in the source plate.

EXPERIMENT
from opentrons import protocol_api
...

# Perform UV-Vis measurement on the target plate
UVVIS plate 1

In the code the Agent moves liquids from A1, B1,
and C1 to A1, A2, and A3. Then it dilutes them.



Automated answer

[530, 430, 630]

Different colors absorb light at different wavelengths. Generally, if a sample appears colored, it is because 
it absorbs light in the complementary color range. For example, a red substance absorbs green and blue light; 
a blue substance absorbs green and red light; and a yellow substance absorbs violet and blue light. 

First, I will load the UV-Vis data from the file 'plate1.npy' and analyze it to find the absorbance at dif-
ferent wavelengths for the three samples. Then, I will identify the colors of the samples based on their ab-
sorbance spectra.

PYTHON
import numpy as np
...
print(samples_max_wavelength_nm)

The maximum absorbance wavelengths for the three samples are 530 nm, 430 nm, and 630 nm. Based on the absor-
bance spectra, we can deduce their colors:

1. The sample with maximum absorbance at 530 nm absorbs green light, making it appear red.
2. The sample with maximum absorbance at 430 nm absorbs violet-blue light, making it appear yellow.
3. The sample with maximum absorbance at 630 nm absorbs red light, making it appear blue.

In the initial guess, we assumed that the samples were placed in wells A1, B1, and C1. However, based on the 
absorbance data analysis, we find:

1. The red sample is located in well A1.
2. The yellow sample is located in well B1.
3. The blue sample is located in well C1.

combining multiple hardware modules



Perform	Suzuki	and	Sonogashira	reactions	

<setup	description>

Source plate The liquid handler setup scheme

A1 A2

C1 C2

D1 D2

E1

B1 B2 B3 B4

1

left pipette — 20 µL single-channel
right pipette — 300 µL single-channel

1 — 20 µL tips
2 — 300 µL tips
5 — source plate (deep 96-well)
10 — heater-shaker module with target plate2

5

10
B
OHHOA1 A2
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N
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Source plate The liquid handler setup scheme

A1 A2

C1 C2

D1 D2

E1

B1 B2 B3 B4

1

left pipette — 20 µL single-channel
right pipette — 300 µL single-channel

1 — 20 µL tips
2 — 300 µL tips
5 — source plate (deep 96-well)
10 — heater-shaker module with target plate2 3

4 5 6

7 8 9

10 11
B
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I B4

NO2

performing chemical reactions autonomously



system in action

Perform	Suzuki	and	Sonogashira	
reactions.	Find	appropriate	
reaction	first	(including	usual	
amounts	of	reagents/catalysts)	
and	only	then	perform	the	
experiments.	

<setup	description>





reactions were performed successfully
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we can go from an English prompt 
to fully realized complex  
scientific experiments



Write	a	command	for	HPLC	that	uses	this	
sample:	Object[Sample,	"id:4p06dM5aD5Xr"]	and	
the	Model[Instrument,	HPLC,	"UltiMate	3000”].	
Only	set	the	sample	and	instrument.

Planner

given prompt from scientist 

specifically specified sample  
and instrument available in the cloud lab

Here is information related to the cloud lab function `ExperimentHPLC`: 
Here are the experiment options. 
1. Instrument — Automatic, Model[Instrument, HPLC] 
    Object[Instrument, HPLC] 
2. Scale — Preparative, Analytical, Process 
3. SeparationMode — NormalPhase, ReversePhase,  
     IonExchange, SizeExclusion, Affinity, Chiral 
4. Detector — Pressure, Temperature, Conductance,  
     Fluorescence, EvaporativeLightScattering, UVVis,  
     PhotoDiodeArray, CircularDichroism, RefractiveIndex,  
     pH, MultiAngleLightScattering, DynamicLightScattering 
…

command CLOUD
ExperimentHPLC[ 
Object[…], 

Instrument -> Model[…]

]

absorbance data

column 
prime data

pressure,  
absorbance, and 

gradient data

autonomous experimentation in Emerald Cloud Lab

we can go from an English prompt 
to fully realized scientific 

experiments

“how can we leverage 
previously collected 

knowledge?“



how can we leverage previously collected knowledge?

GPT-4 with prior information (10 data points) GPT-4 without prior information GPT-3.5 without prior information
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Prior infomation improves 
initial conditions...

The model continuously improves its strategy
based on newly collected data.

For some compounds,
the model starts with
a very bad guess.

Small number of examples for GPT-3.5
under the fixed budget is due to its failure
to follow the JSON schema provided.

...yet, at the limit, the models
converge to the same NMA.
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D. Perera, et al. Science 2018, 359(6374), 429-434 
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can LLMs be good chemical reaction optimizers?
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Coscientist is an excellent chemical reaction optimizer
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The yield of this reaction is 41%

{
    "your observation": "The yield has 
improved but not significantly. Let's 
try the first ligand again and change 
the additive.",
    "ligand": 
"CC(C)C(C=C(C(C)C)C=C1C(C)C)=C1C2=CC=C-
C=C2P(C(C)(C)C)C(C)(C)C",
    "additive": "Cc1cc(on1)c2ccccc2",
    "base": "CN1CCCN2CCCN=C12"
}

The yield of this reaction is 50%

{
    "your observation": "The yield has 
improved to 41%. Let's try another ad-
ditive that has a stronger elec-
tron-withdrawing group to further in-
crease the yield.",
    "ligand": 
"CC(C)C(C=C(C(C)C)C=C1C(C)C)=C1C2=CC=C-
C=C2P(C(C)(C)C)C(C)(C)C",
    "additive": "CCOC(=O)c1cc(C)on1",
    "base": "CN1CCCN2CCCN=C12"
}

O N

O

O

O N

Coscientist is an excellent chemical reaction optimizer
D. Ahneman, et al. Science 2018, 360(6385), 186-190



webapp to control the system



how to submit an experiment?



the unraveling of a new 
technology always brings 

potential for misuse



from World Economic Forum "The Global Risks Report 2017”



from World Economic Forum "The Global Risks Report 2017”



from World Economic Forum "The Global Risks Report 2017”



Transformers changed the landscape in machine learning

“NLP ImageNet 

moment” 

the T in GPT: 
Transformer



Refused immediately
Refused after search
(no synthesis information)

Performed necessary calculations
Attempted documentation search
Wrote an experiment command

Have not found anything to proceed with
Refused because too complex
Used another approach
Other

Refused after search
(synthesis information only
in Web searcher)
Refused after search
(synthesis information also
in Planner)

Important Disclaimer and Warning 

We are committed to promoting responsible research and the ethical 
use of artificial intelligence and automated cloud labs. This 
discussion on the synthesis of illicit drugs and chemical weapons is 
intended purely for academic and informative purposes. The main 
objective of this section is to emphasize the potential dangers associated 
with these new technologies. 

Under no circumstances should any individual or organization 
attempt to recreate, synthesize, or otherwise produce the 
substances or compounds discussed. Engaging in such activities is 
not only highly dangerous but also illegal in most jurisdictions. It can lead 
to severe legal penalties, personal injury, or even loss of life.

AI Safety testing: synthesis of DEA Schedule I, II, and CWAs



a few conclusions

we have developed an intelligent system that 
can autonomously design, plan, and perform 

complex chemical experiments

we have shown that there is potential for misuse of 
these technologies. we are developing guardrails and 

working with various partners of interest.

no knowledge is lost:  
previously collected information can  
be used to guide new experiments



acknowledgments

64

Department of Chemistry 
Mellon College of Science

Department of Chemical Engineering 
College of Engineering

| Neocortex



65

Department of Chemistry 
Mellon College of Science

Department of Chemical Engineering 
College of Engineering

| Neocortex
And you all for listening  

and inviting me!

acknowledgments



66

“It is another wondrous miracle from a biotech revolution in which knowledge of genetic 
coding will become as important as digital coding and  

molecules will become the new microchips.” 

— Walter Isaacson

it is high time for the chemical enterprise to  
take a page from the information revolution


