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Commodity Conversion Assets: Real Options

• Refineries: Real option to convert a set of inputs into a different 
set of outputs

• Natural gas storage: Real option to convert natural gas at the 
injection time to natural gas at the withdrawal time
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How do we optimally manage the available real optionality?



Key Problem Features

3

Dynamic Decisions
Decisions can be taken over a 
set of discrete times (stages)

Uncertainty
Decisions depend on the evolution 
of uncertain information 

Examples: Commodity forward 
curve or demand forecast

Operational Constraints
Decisions must satisfy operational 
constraints

These constraints couple decisions 
over time



Decision Making Process
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Forward/Demand 
Curve

Inventory

Make a decision 
and receive a 
reward

New Inventory

Current Time Period 

Observe new 
forward curve

Next Time Period

New Forward/Demand 
Curve

New Inventory



Elements of Markov Decision Process
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The above collection of elements is referred to as a 
Markov decision process (Puterman 1994)



Markov Decision Problem (MDP)
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Discount factor

(Puterman 1994, Bertsekas 2005)



Continuation function SDP:

Value function SDP:

Stochastic Dynamic Programs (SDPs)
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• Value function at state            : The sum of discounted expected rewards 
from following an optimal policy starting from               

• If we can solve any one of these formulations, we have an optimal 
policy!



Curses Of Dimensionality

• High dimensional exogenous information state (e.g. 12 months, 365 
days)
1. Exact value/continuation function is high dimensional
2. Expectations are high dimensional

• We need to solve these intractable SDPs approximately
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Approximate Dynamic Programming (ADP) Template

1. Compute a value function approximation or continuation value 
function approximation

2. Estimate lower bounds by simulating the induced heuristic 
policy in Monte Carlo simulation

3. Estimate upper bounds using the information relaxation and 
duality approach

Optimality gap provides a guarantee on the policy quality
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1) Functional Approximations

• Fundamental idea: Approximate              or                  by a low 
dimensional function

• In many practical applications it is typically possible to find good 
lower dimensional approximations

• value function approximation

• continuation function approximation 

• Many different ways of obtaining these approximations (Bertsekas
2005, Powell 2011)
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2) Lower Bounds: Online Heuristic Policies

• Forgo trying to find an explicit policy over entire state

• Instead, given a state          , solve a math program in an online 
fashion to compute actions
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Deterministic optimization problem. No expectation!

Stochastic optimization problem. 

When these 
approximations are 
exact the online actions 
match the actions from 
an optimal policy

Simulating this online 
policy in Monte Carlo 
simulation gives a lower 
bound estimate



3) Upper Bounds

Intuition: Allow the decision maker to use future information and 
then penalize this future knowledge [Rogers (2002), Haugh and Kogan
(2004), Brown et al.(2010)]

• Upper bound estimation involves solving a collection of deterministic 
dynamic programs in Monte Carlo simulation

• Value/continuation function approximations can be used in this 
procedure to define penalties

• If the value/continuation function approximations are exact then the 
upper bound is equal to the value of an optimal policy
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ADP Template

1. Compute/Estimate a value function approximation or 
continuation value function approximation

2. Estimate lower bounds by simulating the induced heuristic 
policy in Monte Carlo simulation

3. Estimate upper bounds using the information relaxation and 
duality approach

Optimality gap provides a guarantee on the policy quality
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Basis Function Approximations

• Express approximation as a linear combination of known 
functions referred to as basis functions

• Basis functions: Maps from the state space to the real line 
(Bellman and Dreyfus 1956, Bertsekas 2005, Powell 2011)

• Basis functions are typically a user input to an ADP method
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• Choose basis function as

• Write  

• In practice, the value function is unknown 

• It is typically possible to obtain some 
information about the function’s structure



Basis Function Approximations contd

• Value function approximation

• Continuation function approximation

• How do we compute the weights     or     ?  

Basis functions
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ADP Approximation Methods

This talk:
1. Monte Carlo based regression methods

2. Approximate linear programming

Other methods
3. Reinforcement learning 

16



Regression Methods

1. Simple endogenous state and high dimensional exogenous state
– Endogenous state is typically one dimensional
– Exogenous state is a forward curve or demand curve
– Pioneered by Carriere 1996 (250+ citations), Longstaff and Schwartz 

2001  (1650+ citations) and Tsitsiklis and Van Roy 2001 (300+ citations) 
for pricing American options

2. High dimensional endogenous state and no exogenous state
– Endogenous state is high dimensional
– Uncertainty is iid and thus does not appear in the MDP state
– see Powell (2011) for more details

3. High dimensional endogenous and exogenous state
– Largely unexplored by the OR community
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Regression Methods: Real Options

• Compute a continuation function approximation                       
using extensions of the Longstaff and Schwartz (2001) approach for 
American options

• Combine Monte Carlo simulation and least squares regression in a  
recursive procedure to compute the basis function weights

• Standard for real option pricing in practice and academia
– Switching options (Cortazar 2008)

– Gas storage (Boogert and De Jong 2008)
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• Suppose we have a continuation function approximation       
at stage         and want to find 

• Sample P forward curve paths

• For each sample compute the stage    continuation function 
estimate

• Regress over estimates to compute stage   continuation 
function approximation weights

Elegant Idea: Point Estimate of Expectation

i

i
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• N. et al. (2012a): Wouldn’t it be nice if we could compute 
expectations exactly?

• Possible when using a value function approximation for:
1. a class of basis functions and 

2. a rich class of forward curve evolution models that is popular among 
practitioners

• Value function approach outperforms the continuation 
function approach on our numerical experiments on swing 
option and commodity storage instances

• We also provide some theoretical support for this numerical 
performance

Regression Methods: Value Function

20



ADP Approximation Methods

This talk:
1. Monte Carlo based regression methods

2. Approximate linear programming
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Approximate Linear Programming

• Computes the weights of a value function approximation by 
solving a linear program 
(Schweitzer and Seidman 1985, deFarias and Van Roy 2003)

• Popular in the operations research literature:
– Economics: Trick and Zin (1997)
– Inventory control: Adelman (2004) and Adelman and Klabjan (2011)
– Revenue Management: Adelman (2007), Farias and Van Roy (2007),  Zhang 

and Adelman (2009)
– Queueing: Morrison and Kumar (1999), de Farias and Van Roy (2001,2003), 

Moallemi et al. (2008), and Vaetch (2010). 

• A large exogenous information vector is absent in the state of 
most SDPs considered in the approximate LP literature
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• LP reformulation of the value function SDP (Manne 1960)

• Computes the value function at all states visited by an optimal policy 
starting from the initial state.

• Dual variables                   can be interpreted as (discounted) 
probabilities and are in one-one correspondence with feasible policies 
(Puterman 1994)

• The exact dual finds an optimal policy

Exact Primal and Dual Linear Programs
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Intractable!



• Apply value function approximation on the exact primal variables

• Tractable number of variables but large number of constraints

• Solve ALP to compute weights 

• Dual variables                   can be still interpreted as (discounted) 
probabilities

• ALP has theoretical guarantees (deFarias and Van Roy 2003)

Approximate Primal and Dual Linear Programs
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Solving ALP

• Constraint sampling
– A small number of constraints are sufficient to determine the 

optimal solution to ALP
– Theoretical sampling guarantees (de Farias and Van Roy 2004)

– Standard approach for solving an ALP

• Column generation
– Solve the ALP dual using column generation
– Revenue management (Adelman 2004)
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• The ALP constraints require the value function approximation 
to be an upper bound on the exact value function at every state

• Petrik and Zilberstein (2009) proposed a relaxation of ALP to 
overcome this issue

• Desai et al. (2012) provide strong theoretical guarantees and 
practical implementation rules for this ALP relaxation

Is ALP the Correct Math Program? 
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V

VALP



Probability Distortions and Pathologies
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• N. et al. (2012b): Is the optimal solution set of the ALP dual 
related to optimal policies?

• Not necessarily! The optimal solution set of the ALP dual can 
have large distortions from the probability distributions of 
optimal policies.

• These large distortions can lead to pathological scenarios

Exact primal

Exact dual                         Policies

Value 
function

ALP

ALP dual                         ??????

Value 
function 

approximation



A New ADP Approach
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• General framework to derive ALP relaxations (N. et al. 2012b)      

• Solve relaxed ALP to obtain a value function approximation



Are ALP relaxations useful?

• We apply ALP relaxations to commodity storage (N. et al 2012b)

• Lower and upper bound improvements over ALP as a 
percentage of best upper bound
– Lower bound improvements as large as 99%
– Upper bound improvements as large as 600%

• Policies from an ALP relaxation were near optimal on our 
commodity storage instances
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Summary

• The merchant operations of commodity and energy 
conversion assets is a practically important area of research 
that give rises to intractable SDPs.

• Approximate dynamic programming provides a rich set of 
tools to heuristically solve intractable SDPs

• Problems with large (correlated) exogenous information 
variables in the state lead to new challenges that require new 
ADP methodology
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Ongoing Work

• Methodology: 
– Exploring other math programming approaches for 

obtaining value function approximations
– ADP methods for real options problems where the 

endogenous state is also a vector

• Applications: 
– Integrated management of commodity storage and 

transport on a pipeline system
– Many more…..
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Thank you!
(snadarajah@cmu.edu)
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