
Pyomo and JuMP – Modeling environments for the 21st

century

Qi Chen and Braulio Brunaud

EWO Seminar
Carnegie Mellon University

March 10, 2017

Disclaimer

1.All the information provided
is coming from the
standpoint of two somewhat
expert users in Pyomo and
JuMP, former GAMS users

2. All the content is presented
to the best of our
knowledge

2

The Optimization Workflow

 These tasks usually involve many tools:
– Databases
– Excel
– GAMS/AMPL/AIMMS/CPLEX
– Tableau

 Can a single tool be used to complete
the entire workflow?

Data Input

Data
Manipulation

Optimization

Analysis

Visualization
3

Optimization Environments Overview

Visualization

Modeling

Advanced
algorithms

End User

Optimization
Expert

● Different input sources
● Easy to model
● AMPL: Specific modeling

constructs
○ Piecewise
○ Complementarity

conditions
○ Logical Implications

● Solver independent models
● Developing complex

algorithms can be
challenging

● Large number of solvers
available

● Commercial
4

Visualization

Modeling

Advanced
algorithms

End User

Optimization
Expert

● Different input sources
● Build input forms
● Easy to model
● Multiplatform:

○ Standalone
○ Web
○ Mobile

● Solver independent
models

● Build visualizations
● Commercial

Optimization Environments Overview

5

Visualization

Modeling

Advanced
algorithms

End User

Optimization
Expert

solver -specific
code

● Different input sources
● Hard to model
● Access to the full power of

a solver
● Access to a broad range of

tools
● Solver-specific models
● Building visualizations is

hard
● Open source and free

Optimization Environments Overview

6

Visualization

Modeling

Advanced
algorithms

End User

Optimization
Expert

solver -specific
code

JuMP

● Different input sources
● Easy to model
● Access to the full power of a solver
● Access to a broad range of tools
● Helpful modeling extensions

○ Uncertainty
○ Multiobjective (MultiJuMP)
○ Pyomo/DAE

● Solver-independent models
● Building visualizations is hard
● Open source and free

Optimization Environments Overview

7

Visualization

Modeling

Advanced
algorithms

End User

Optimization
Expert

solver -specific
code

JuMP

Optimization Environments Overview

8

Data Input hard hard ✔ ✔ ✔ ✔

Data Manipulation
❌ ❌ ✔ ✔ ✔ ✔

Modeling ✔ ✔ ✔ hard ✔ ✔

Advanced
Algorithms hard hard ✔ ✔ ✔ ✔

Solvers Availabilty ✔ ✔ limited ❌ limited limited

Visualization ❌ ❌ ✔ hard hard hard

License $ $ $$ free free free

JuMP

Optimization Environments Overview

9

version 0.5.1

 New programming language for
scientific computing

 Aims to combine
– Flexibility from Python
– Math power from Matlab and R
– High performance from C++

 Designed with performance in
mind

 Designed for parallel computing
 Metaprogramming

– Code that generates code
 Very easy to code

http://julialang.org/

Learn:
https://learnxinyminutes.com/docs/julia/ 10

http://julialang.org/
https://learnxinyminutes.com/docs/julia/

JuMP

 Julia module for Mathematical
Programming

 Provides objects for Model,
Variables, Constraints and
Expressions

 Easy implementation of callbacks
 Supports Unicode characters
 Supports:

– MINLP
– Second order conic

programming
– Semi-definite programming

 @ sign means a macro
(metaprogramming)

jump.readthedocs.io 11

http://jump.readthedocs.io/

JuMP - Data Input

1. Database

For other databases check JuliaDB 12

https://github.com/JuliaDB

JuMP - Data Input

2. Excel

13

JuMP - Data Input

3. Julia Code

Use dictionaries Use matrices

In this case, indices are restricted to
be integers

14

JuMP - A simple example

Solve the following problem using CPLEX

15

JuMP - A simple example

Variables and constraints can be declared
individually or in blocks

16

JuMP - Under the hood

 All the layers are very thin. This is
why creating and manipulating
models is very fast.

 Julia is designed to make efficient
calls to C or Fortran

JuMP

MathProgBase

CPLEX.jl Gurobi.jl

CPLEX
C API

Gurobi
C API

JuMP objects

Interface

Solvers interface

C libraries

17

JuMP - Under the hood

JuMP

MathProgBase

CPLEX.jl

CPLEX
C API

JuMP objects

Interface

Solvers interface

C libraries

@variable(m, x >=0)

addvar!

addvar!

addcols

Example:
Adding a
variable

18

JuMP - Accessing the low level objects

 Let’s get the simplex tableau of the simplex
example

19

JuMP - Accessing the low level objects

 Let’s get the simplex tableau of the simplex
example

JuMP

MathProgBase

CPLEX.jl

CPLEX
C API

m

mpb

cpx

Model Object

cpx.ptr

20

JuMP - Accessing the low level objects

 Let’s get the simplex tableau of the simplex
example

JuMP

MathProgBase

CPLEX.jl

CPLEX
C API

m

mpb

cpx

Model Object

get_tableau_row

Function

CPXbinvarowcpx.ptr

21

JuMP - Accessing the low level objects

 Let’s get the simplex tableau of the simplex
example

JuMP

MathProgBase

CPLEX.jl

CPLEX
C API

m

mpb

cpx

Model Object

get_tableau_row

Function

CPXbinvarowcpx.ptr

When declaring a model in JuMP it is possible to access every single function in the C API 22

JuMP - Extensions

 JuMP is written in very few lines of code (9,000) and it is very simple to understand
 It is not difficult to write extensions

– JuMPeR.jl: for robust optimization
– MultiJuMP.jl: for multi-objective optimization
– JuMPChance.jl: for probabilistic chance constraints
– StochDynamicProgramming.jl: for discrete-time stochastic optimal control problems
– PolyJuMP.jl: for polynomial optimization
– StructJuMP.jl: for block-structured optimization
– NLOptControl.jl: for formulating and solving nonlinear optimal control problems
– Complementarity.jl: for complementarity problems
– DSP, Argonne National Lab: Implements decomposition methods for stochastic mixed-integer programs

http://www.juliaopt.org/packages/

23

https://github.com/IainNZ/JuMPeR.jl
https://github.com/anriseth/MultiJuMP.jl
https://github.com/mlubin/JuMPChance.jl
https://github.com/JuliaOpt/StochDynamicProgramming.jl
https://github.com/blegat/PolyJuMP.jl
https://github.com/StructJuMP/StructJuMP.jl
https://github.com/huckl3b3rry87/NLOptControl.jl
https://github.com/chkwon/Complementarity.jl
http://www.juliaopt.org/packages/

JuMP - Pros and Cons

Pros
 It’s new
 Fast
 Free
 Easy and simple source code
 Access to low level objects
 Built with performance in mind
 Support through an active community at

the Julia forums
 Plenty of libraries to support your

workflow
 Data analysis
 Plotting
 Statistics
 It is also possible to call libraries from

other languages within Julia: Python, C++,
Fortran, R, Matlab, Java, etc

24

JuMP - Pros and Cons

Pros
 It’s new
 Fast
 Free
 Easy and simple source code
 Access to low level objects
 Built with performance in mind
 Support through an active community at

the Julia forums
 Plenty of libraries to support your

workflow
 Data analysis
 Plotting
 Statistics
 It is also possible to call libraries from

other languages within Julia: Python, C++,
Fortran, R, Matlab, Java, etc

Cons
 It’s new

 The platform and the supporting packages
are not mature enough

 JuMP version 0.16
 No standard solution report
 Lack of modeling features

 Piecewise (SOS are supported though)
 Disjunctions
 Indicator Constraints

25

http://python.org/

26

http://julialang.org/

Mathematical Modeling in Python

26.7%

Why Python?

 High level coding language: mature + stable
• Used in production by Google, Facebook,

IBM, Nasdaq, etc.
• Deep pool of experienced developers

 Enables fast prototyping and integrated work
process

 Many useful libraries:
• Numpy – linear algebra
• Pandas – Data input/output + parsing
• Networkx – Network graph analysis + display
• PyQt – Graphical User Interface
• Matplotlib – plotting results
• Python interfaces common for external tools

 Ability to aggregate data from multiple sources

15-112
Fund. of

Prog. & CS

 Taken by many CMU
undergraduates

 Python-oriented

Contributions from 3 undergraduates

Eloy Fernandez Jacqueline Lewis Sunjeev Kale

27 / 55

Mathematical Modeling in Python

Why Python?

 High level coding language: mature + stable
• Used in production by Google, Facebook,

IBM, Nasdaq, etc.
• Deep pool of experienced developers

 Enables fast prototyping and integrated work
process

 Many useful libraries:
• Numpy – linear algebra
• Pandas – Data input/output + parsing
• Networkx – Network graph analysis + display
• PyQt – Graphical User Interfaces
• Matplotlib – plotting results
• Python interfaces common for external tools

 Ability to aggregate data from multiple sources

28 / 55

PyQt tool for model visualization

Courtesy of John Eslick, NETL

29 / 55

Why Python? (cont.)

Tools for effective model stewardship

 Programmatic documentation generation
• Easily generate webpage with code and

model documentation
 Standardized code style guide (PEP8)

• Automatic code formatting
• Makes models more consistently

readable to multiple users
 Software version control (Git)
 Automatic testing

• Ensures that future changes do not
silently break existing functionality

• Identifies affected code
• Automatically executed when changes

made to code
 Facilitates management of change from user

to user

30 / 55

Why Python? (cont.)

Tools for effective model stewardship

 Programmatic documentation generation
• Easily generate webpage with code and

model documentation
 Standardized code style guide (PEP8)

• Automatic code formatting
• Makes models more consistently

readable to multiple users
 Software version control (Git)
 Automatic testing

• Ensures that future changes do not
silently break existing functionality

• Identifies affected code
• Automatically executed when changes

made to code
 Facilitates management of change from user

to user

31 / 55

Why Python? (cont.)

Tools for effective model stewardship

 Programmatic documentation generation
• Easily generate webpage with code and

model documentation
 Standardized code style guide (PEP8)

• Automatic code formatting
• Makes models more consistently

readable to multiple users
 Software version control (Git)
 Automatic testing

• Ensures that future changes do not
silently break existing functionality

• Identifies affected code
• Automatically executed when changes

made to code
 Facilitates management of change from user

to user

32 / 55

Pyomo: Python Optimization Modeling Objects

Solver Interfaces

GLPK

CPLEX

Gurobi

Xpress

CBC

BARON

OpenOpt

Ipopt

KNITRO

Bonmin

AMPL Solver Library

Core Modeling
Objects NEOS

Couenne

Meta-Solvers
• Generalized Benders
• Progressive Hedging
• Linear bilevel
• Linear MPEC

Modeling Extensions
• Disjunctive programming
• Stochastic programming
• Bilevel programming
• Differential equations
• Equilibrium constraints

Core Optimization
Objects

Model
Transformations

Python library for optimization

 Key optimization objects
• Sets
• Variables
• Parameters
• Constraints
• Objective
• Model
• Solvers

 Able to manipulate core
modeling and optimization
objects

33 / 55

Mathematical Modeling in Pyomo

Pyomo features

 Pyomo library offers
algebraic modeling
language (like AMPL and
GAMS) and solver
interfaces in Python

 Allows programmatic
access to modeling objects
(sets, variables, constraints,
etc.)
• Enables advanced

model design

simple.py
from pyomo.environ import *

M = ConcreteModel()
M.x1 = Var()
M.x2 = Var(bounds=(-1,1))
M.x3 = Var(bounds=(1,2))
M.c1 = Constraint(expr=M.x1 == M.x2 + M.x3)
M.o = Objective(

expr=M.x1**2 + (M.x2*M.x3)**4 + \
M.x1*M.x3 + \
M.x2*sin(M.x1+M.x3) + M.x2)

opt_result = SolverFactory(‘ipopt’).solve(M)
opt_model = M

34 / 55

Pyomo advantages

Features

 Open source + free to
use/modify commercially

 Modeling extensions
• Pyomo.GDP
• Pyomo.DAE
• PySP (stochastic)
• Bilevel programming

 Strong support for modular
modeling

 Ability to perform programmatic
model transformations

 Allows use of advanced
solution algorithms

Modeling extensions

 GDP automatic reformulations
 Express DAE in terms of differential

equations
 PySP: support for scenario generation

and progressive hedging algorithm
 Ability to build models at high level of

abstraction

GDP

MINLP big-M

MINLP Hull Reform.

DAE NLP

35 / 55

Modular Modeling

Advantages of modularity

 Ability to create nested unit
models

 Each unit model has its own
namespace
• No need to keep track of

T1, T2, T3…
• Instead: reactor.T, flash.T

 Easier maintenance of unit
models

 Ability to test models
independently Feed Prod

Set declarations

Parameter declarations

Variable declarations

Constraint declarations

Specifications

Data

Data

Data

Data

Data

Traditional modeling approach Object-oriented modeling

Da
ta

 A
bs

tr
ac

tio
n

La
ye

r

Flowsheet object

Global sets Global params

Global specs

Multi-stage compressor object

Compressor Cooler Compressor

Global variables

Global constraints

Feed object Mixer objectSplitter object

Compressor object

Chen, Qi; Grossmann, IE. “Recent Developments and Challenges in Optimization-Based
Flowsheet Synthesis.” Annual Review of Chemical and Biomolecular Engineering. In press,
expected July 2017.

Figure from

36 / 55

Programmatic model transformations

Dynamic model transformations

 Utility functions to add linear
relaxations

 Dynamic activation or
deactivation of nonlinear
expressions

 Automatic generation and
addition of linearizations

 Model state introspection
• Propagation of fixed

variables
• Deactivation of redundant

constraints

Code

for s in streams:
for c in components:

add_mccormick_relaxation(mc_flow_block,
z=fc[comp, s], x=F, y=mole_frac[c, s], nsegs=5, (s, c))

Result

Automatically adds variables and equations for a 5-
segment piecewise McCormick relaxation for the
bilinear relation 𝑓𝑓𝑐𝑐,𝑠𝑠 = 𝐹𝐹𝑠𝑠𝑥𝑥𝑠𝑠 for each component 𝑐𝑐 and
stream 𝑠𝑠

37 / 55

Programmatic model transformations

Dynamic model transformations

 Utility functions to add linear
relaxations

 Dynamic activation or
deactivation of nonlinear
expressions

 Automatic generation and
addition of linearizations

 Model state introspection
• Propagation of fixed

variables
• Deactivation of redundant

constraints

Nonlinear constraint deactivation/reactivation

Model.deactivate_nonlinear_constraints()
Model.reactivate_nonlinear_constraints()

Implication

 Required in order to switch between linearized and nonlinear
forms of model for LOA

 Dynamically detects which equations are nonlinear (vs. linear
due to fixed variables)

 Ability to remember which equations need to be reactivated

38 / 55

Programmatic model transformations

Dynamic model transformations

 Utility functions to add linear
relaxations

 Dynamic activation or
deactivation of nonlinear
expressions

 Automatic generation and
addition of linearizations

 Model state introspection
• Propagation of fixed

variables
• Deactivation of redundant

constraints

Code

Model.apply_OA_strategy()
Model.add_oa_cuts()

Result

 Analyzes nonlinear expressions and computes Jacobians
 Evaluates the Jacobians at the current variable values when

add_oa_cuts is called in order to construct the outer
approximation constraints

 Automatically adds the OA constraints to the model

39 / 55

Programmatic model transformations

Dynamic model transformations

 Utility functions to add linear
relaxations

 Dynamic activation or
deactivation of nonlinear
expressions

 Automatic generation and
addition of linearizations

 Model state introspection
• Propagation of fixed

variables
• Deactivation of redundant

constraints

Code

Model.propagate_var_fix(tmp=True)
Model.introspect_flows()

Result

 Looks for simple constraints of form 𝐴𝐴 = 𝐵𝐵. If 𝐴𝐴 or 𝐵𝐵 is fixed,
then fix the other variable to the same value. Propagates for all
members of the equality set

 Looks to see if a stream has all of its flow variables deactivated.
If so, deactivates the constraints associated with the stream.
• Avoids redundant equations, making NLP solver more

robust

40 / 55

Implementation of logic-based outer approximation (LOA)

do_LOA()

init_LOA()

build_model()
1

2

3

4
apply_OA_strategy()

solve_set_cover_MIP()  Compute + activate set covering
objective

 Activate linearizations
 Deactivate nonlinear constraints
 Deactivate fathomed units
 Deactivate OA cuts
 Solve MIP
 Reactivate OA cuts

41 / 55

Implementation of logic-based outer approximation (LOA)

do_LOA()

init_LOA()

build_model()
1 3

apply_OA_strategy()

solve_set_cover_MIP()

solve_local_NLP()

 Activate normal objective
 Activate relevant nonlinear constraints
 Deactivate linearizations
 Deactivate OA cuts
 Apply NLP initialization strategy
 Propagate fixed variables
 Introspect flows
 Deactivate trivial constraints
 Set minimum flows
 Solve NLP
 Unset minimum flows
 Undo pre-solve model transformations
 Update upper bound
 Save values if best so far
 If not optimal, reinitialize + try again

42 / 55

Implementation of logic-based outer approximation (LOA)

do_LOA()

init_LOA()

build_model()

apply_OA_strategy()

solve_set_cover_MIP()

solve_local_NLP()

add_oa_cuts()

 Evaluate Jacobians
 Generate + add outer approximation

(OA) constraints corresponding to all
nonlinear constraints

1

2

3

4

43 / 55

Implementation of logic-based outer approximation (LOA)

do_LOA()

init_LOA()

build_model()

apply_OA_strategy()

solve_set_cover_MIP()

solve_local_NLP()

add_oa_cuts()

add_int_cut()

 Generate + add integer cut

1

2

3

4

44 / 55

Implementation of logic-based outer approximation (LOA)

do_LOA()

init_LOA()

build_model()

apply_OA_strategy()

solve_set_cover_MIP()

solve_local_NLP()

add_oa_cuts()

add_int_cut()

 Loop until all units covered

1

2

3

4

45 / 55

Implementation of logic-based outer approximation (LOA)

do_LOA()

init_LOA()

solve_local_MIP()

build_model()
1

2

3

4
apply_OA_strategy()

 Activate augmented Lagrangian OA
objective

 Activate linearizations
 Deactivate nonlinear constraints
 Deactivate fathomed units
 Activate OA cuts
 Solve MIP
 Update lower bound

46 / 55

Implementation of logic-based outer approximation (LOA)

do_LOA()

init_LOA()

solve_local_MIP()

solve_local_NLP()

build_model()

apply_OA_strategy()

 Activate normal objective
 Activate relevant nonlinear constraints
 Deactivate linearizations
 Deactivate OA cuts
 Apply NLP initialization strategy
 Propagate fixed variables
 Introspect flows
 Deactivate trivial constraints
 Set minimum flows
 Solve NLP
 Unset minimum flows
 Undo pre-solve model transformations
 Update upper bound
 Save values if best so far
 If not optimal, reinitialize + try again

1

4

47 / 55

Implementation of logic-based outer approximation (LOA)

do_LOA()

init_LOA()

solve_local_MIP()

solve_local_NLP()

build_model()

apply_OA_strategy()

add_oa_cuts()

if optimal

 Evaluate Jacobians
 Generate + add outer approximation

(OA) constraints corresponding to all
nonlinear constraints

1

4

48 / 55

Implementation of logic-based outer approximation (LOA)

do_LOA()

init_LOA()

solve_local_MIP()

solve_local_NLP()

build_model()

apply_OA_strategy()

add_oa_cuts()

add_int_cut()

if optimal

 Generate + add integer cut

1

4

49 / 55

Implementation of logic-based outer approximation (LOA)

do_LOA()

init_LOA()

solve_local_MIP()

solve_local_NLP()

loop

build_model()
1

2

3

4
apply_OA_strategy()

add_oa_cuts()

add_int_cut()

if optimal

 Loop until upper bound and lower bound
converge

50 / 55

Implementation of logic-based outer approximation (LOA)

do_LOA()

init_LOA()

solve_local_MIP()

loop

build_model()
1

2

3

4
apply_OA_strategy()

 Loop until upper bound and lower bound
converge

51 / 55

Implementation of logic-based outer approximation (LOA)

do_LOA()

init_LOA()

solve_local_MIP()

solve_local_NLP()

loop

build_model()

apply_OA_strategy()

add_oa_cuts()

add_int_cut()

if optimal

 Loop until upper bound and lower bound
converge

2

3

Conclusion
 Pyomo allows for

advanced algorithm
development

52 / 55

Pyomo current shortcomings

Opportunities for growth

 Does not ship with solvers
• Can be difficult for novice users to install solvers and set up solver licensing

 Lack of pre-processor [active development]
 Documentation is sparse for advanced usage and modeling extensions: difficult learning curve past basic

modeling
• Plugin system is complex: difficult to figure out how to contribute new plugins

 Best practices for saving/loading of model state currently unclear
• Would be useful in some multiprocessing applications

 Backwards compatibility of new releases not guaranteed
• Old release will remain usable, but without newer features

53 / 55

Conclusions + Remarks

When to use Pyomo

 Perform data input, cleaning, problem
formulation, optimization, analysis, and
visualization in integrated workflow

 Construct models at a high level with
advanced concepts and apply custom
transformations into algebraic forms (GDP,
DAE, stochastic, bilevel)

 Development or prototyping of advanced
multi-step solution algorithms

 Second layer to traditional AMLs

This work was conducted as part of the Institute for the Design of Advanced Energy Systems (IDAES) with funding from the Office of Fossil
Energy, Cross-Cutting Research, U.S. Department of Energy.

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

When not to use Pyomo

 Model solution time in deployment is
dominated by model compilation time

 Require access to certain unavailable
solvers, e.g. DICOPT

 Individual solver licensing and deployment
is a headache

 Onerous conversion cost

54 / 55

Conclusion
Pyomo and JuMP are excellent

open source modeling
environments embedded in
fully featured programming
languages, suitable for users at
all levels

55

Appendix

56

JuMP - Quick Installation Guide

1. Download and install Julia
a. http://julialang.org/downloads/
b. You can also try it without installing it at JuliaBox.com

2. Install JuMP
a. julia> Pkg.add(“JuMP”)

3. Install your favorite solver (example CPLEX)
a. http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
b. You need to get your license

4. Install the julia package for your solver
a. julia> Pkg.add(“CPLEX”)

57

http://julialang.org/downloads/
http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud

Pyomo – Installation and References

Install Python
 https://www.python.org/downloads/
 Alternative implementations also popular, especially Anaconda:

https://www.python.org/download/alternatives/

Install Pyomo
 http://www.pyomo.org/installation
 pip install pyomo

Install Solvers
 IPOPT: https://www.coin-or.org/Ipopt/documentation/node10.html
 Gurobi: http://www.gurobi.com/registration/download-reg

References
 Pyomo docs: http://www.pyomo.org/documentation
 Help forum: https://groups.google.com/forum/#!forum/pyomo-forum

58 / 55

https://www.python.org/downloads/
https://www.python.org/download/alternatives/
http://www.pyomo.org/installation
https://www.coin-or.org/Ipopt/documentation/node10.html
http://www.gurobi.com/registration/download-reg
http://www.pyomo.org/documentation
https://groups.google.com/forum/#!forum/pyomo-forum

	Pyomo and JuMP – Modeling environments for the 21st century
	Disclaimer
	The Optimization Workflow
	Optimization Environments Overview
	Slide Number 5
	Optimization Environments Overview
	Optimization Environments Overview
	Optimization Environments Overview
	Slide Number 9
	Slide Number 10
	JuMP
	JuMP - Data Input
	JuMP - Data Input
	JuMP - Data Input
	JuMP - A simple example
	JuMP - A simple example
	JuMP - Under the hood
	JuMP - Under the hood
	JuMP - Accessing the low level objects
	JuMP - Accessing the low level objects
	JuMP - Accessing the low level objects
	JuMP - Accessing the low level objects
	JuMP - Extensions
	JuMP - Pros and Cons
	JuMP - Pros and Cons
	Slide Number 26
	Mathematical Modeling in Python
	Mathematical Modeling in Python
	PyQt tool for model visualization
	Why Python? (cont.)
	Why Python? (cont.)
	Why Python? (cont.)
	Pyomo: Python Optimization Modeling Objects
	Mathematical Modeling in Pyomo
	Pyomo advantages
	Modular Modeling
	Programmatic model transformations
	Programmatic model transformations
	Programmatic model transformations
	Programmatic model transformations
	Implementation of logic-based outer approximation (LOA)
	Implementation of logic-based outer approximation (LOA)
	Implementation of logic-based outer approximation (LOA)
	Implementation of logic-based outer approximation (LOA)
	Implementation of logic-based outer approximation (LOA)
	Implementation of logic-based outer approximation (LOA)
	Implementation of logic-based outer approximation (LOA)
	Implementation of logic-based outer approximation (LOA)
	Implementation of logic-based outer approximation (LOA)
	Implementation of logic-based outer approximation (LOA)
	Implementation of logic-based outer approximation (LOA)
	Implementation of logic-based outer approximation (LOA)
	Pyomo current shortcomings
	Conclusions + Remarks
	Conclusion
	Appendix
	JuMP - Quick Installation Guide
	Pyomo – Installation and References

