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1.All the information provided
is coming from the
standpoint of two somewhat

DiSC‘a | mer expert users in Pyomo and

JUMP, former GAMS users

2. All the content is presented
to the best of our
knowledge




The Optimization Workflow
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Data Input

Data
Manipulation

Optimization

Analysis

Visualization
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= These tasks usually involve many tools:
— Databases
—  Excel
—  GAMS/AMPL/AIMMS/CPLEX
— Tableau

= Can a single tool be used to complete
the entire workflow?



Optimization Environments Overview
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Visualization

Modeling

Advanced
algorithms

End User

t ]

GAMS ‘

AMPL

o

Optimization

| Expert

Different input sources
Easy to model
AMPL: Specific modeling
constructs

o Piecewise

o Complementarity

conditions

o Logical Implications
Solver independent models
Developing complex
algorithms can be
challenging
Large number of solvers
available
Commercial
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Optimization Environments Overview CWYPD
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Visualization | End User ¢
e Different input sources
L e Build input forms
A“VlMS ° Easy to model
e Multiplatform:
Modeling — T I o Standalone
— o Web
GAMS ‘ > Mobile
- e Solver independent
HE ~vie models
l e Build visualizations
l ¢ e Commercial
Advanced | | Optimization
algorithms | | | Expert




Optimization Environments Overview
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Visualization

Modeling

Advanced
algorithms

End User

T» 4

Different input sources
Hard to model

Access to the full power of
a solver

Access to a broad range of
tools

Solver-specific models
Building visualizations is
hard

Open source and free
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solver -specific
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Optimization Environments Overview CWYPD
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Visualization End User T T ¢

Different input sources
Easy to model
Access to the full power of a solver
Access to a broad range of tools
Helpful modeling extensions
— o Uncertainty
— o Multiobjective (MultiJuMP)
o Pyomo/DAE
e Solver-independent models
e Building visualizations is hard

e Open source and free Qon
»-PYOMO

Advanced | | Optimization @
algorithms Expert \J u M P

N S solver -specific
code

® o 0 0 o
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Modeling




Optimization Environments Overview C%PD
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Optimization Environments Overview
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GAMS ‘ ( T

Data Input hard hard v v v v
Data Manipulation

X X v v v v
Modeling v v v hard v v
Advanced
Algorithms hard hard v v v v
Solvers Availabilty v v limited X limited limited
Visualization X X v hard hard hard
License $ $ $$ free free free




julia

version 0.5.1
http://julialang.org/

Learn:
https://learnxinyminutes.com/docs/julia/

New programming language for
scientific computing

Aims to combine
—  Flexibility from Python
—  Math power from Matlab and R
— High performance from C++

Designed with performance in
mind
Designed for parallel computing

Metaprogramming
— Code that generates code

Very easy to code
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http://julialang.org/
https://learnxinyminutes.com/docs/julia/

JUMP In [9]: using JuMP

@ I...
m = Model() Ju Ia:_

@variable(m, x[1:2] >= 0)

= Julia module for Mathematical @variable(m, a == 5)

Programming

= Provides objects for Model,
Variables, Constraints and
Expressions

@constraint(m, con[i in 1:2], x[i] == a)
@objective(m, Max, sum(x[i] for i in 1:2))

_ _ (ishow m
= Easy implementation of callbacks
= Supports Unicode characters m = Maximization problem with:
= Supports: * 2 linear constraints
— MINLP * 3 variables
— Second order conic Solver is default solver
programming
— Semi-definite programming Out[9]: max Xx; + x»
= @ sign means a macro Subjectto x; — o < 0
(metaprogramming)
Xx»—a<0
xi=>0 Viell, 2}
oa=23

11
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http://jump.readthedocs.io/

JUMP - Data Input

CAPD

1. Database

In [ ]: using MySQL
con = mysql_connect("localhost", "bbrunaud”, "***", "DFLdata")

# Get Demands
query = """
SELECT Customer, Product, Period, Demand
FROM Demands
WHERE
(ProductNumber BETWEEN $firstP AND $lastP)
AND
(Period BETWEEN $tl1 AND $tN)
AND

(SiteCode BETWEEN $firstCcode AND $lastCcode)

demands = mysql_execute(con,query)

For other databases check JuliaDB

CENTER
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https://github.com/JuliaDB

JUMP - Data Input CYPD

CENTER

2. Excel

In [2]: using ExcelReaders
using DataFrames

demand = readxl(DataFrame, "demand.xlsx", "Sheetl!Al:D5")

Out[2]: Customer | Product | Period | Demand
1] CUST A 1.0 36.0
2 [CUSH B 1.0 57.0
3|cus2 A 1.0  [30.0
4 (CUS2 B 1.0 44.0

13



JUMP - Data Input
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3. Julia Code

Use dictionaries

In [4]: demand = Dict/

("Cusi","A",1) => 36.0,
("Cusl*,"B",1) == 57.0,
("Ccusz2","A",1) == 30.0,
("Cusz2","B",1) == 44.0

CENTER

Use matrices
In [5]: TransportationCost = [ 100 1.5; 1.7 100]

Out[5]: 2x2 Array{Floatéd,62}:
100.0 1.5
1.7 100.0
In [6]: TransportationCost[1l,2]

OQut[6]: 1.5

In this case, indices are restricted to
be integers

14



JUMP - A simple example CWYPD
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Solve the following problem using CPLEX Load Packages

In [17]: using JuMP
In [22]: @show m using CPLEX
m = Minimization problem with:
* 3 linear constraints
* 5 variables
Solver 1is Cplex

out[22]: min  x Declare model

Subjectto  x+ 16y; + 19y2 +23y3 +28ys =0

Solver options go inside the parenthesis of CplexSolver()
2y1 +3y2 +4y3 +5y4 <9

6y1-+}u +3y3 +2y4 <2 In [18]: m = Model(solver=CplexSolver())
yvi>0 Vie{l, 23,4} out[18]: min 0
xfree Subject to

15



JUMP - A simple example
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In [19]:

Declare variables and constraints

@variable(m, x)
@variable(m, y[1l:4] >= 0)

@constraints m begin

x + ley[1l] + 19y[2] + 23y[3] + 28y[4]

2y[1] + 3y[2] + 4y[3] + 5y[4]
6y[1] + 1ly[2] + 3y[3] + 2y[4]
end

<=9

o=

2

== 0

In [20]:

Out[20]:

In [7]:

CENTER
Declare objective and solve
@bjective(m, Min, x)
solve(m)
Tried aggregator 1 time.
LP Presolve eliminated 1 rows and 1 columns.
Reduced LP has 2 rows, 4 columns, and 8 nonzeros.
Presolve time = 0.00 sec. (0.00 ticks)
Iteration log .
Iteration: 1 Dual infeasibility = 0.000000
Iteration: 2 Dual objective = -56.375000
:0Optimal

Save the solution vector

using JLD

save("solution.jld", "sol", m.colVal)

16



JUMP - Under the hood
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JuMP

l

MathProgBase

O

CPLEX,jl Gurobi.j

CENTER

JuMP objects = All the layers are very thin. This is
why creating and manipulating
models is very fast.

Interface = Julia is designed to make efficient
calls to C or Fortran

Solvers interface

C libraries

17



JUMP - Under the hood Cng

JuMP JuMP objects @variable(m, x >=0)
MathProgBase Interface addvar!
i Example:
Adding a
CPLEX,jl Solvers interface addvar! variable

C libraries addcols

18



JUMP - Accessing the low level objects

CAPD

= Let's get the simplex tableau of the simplex

example
In [24]: mpb = m.internalModel # MathProgBase Model
cpx = mpb.inner # CPLEX Model

Out[24]:

tableau = zeros(length(m.linconstr),m.numCols)

for k in 1l:1length(m.linconstr)
row = CPLEX.get tableau_row(cpx,k-1)
tableaulk,:] = row'

end

tableau

3x5 Array{Float64,2}:

1.0 -98.0 0.0 -34
0.0 6.0 1.0 3
0.0 -16.0 0.0 -5

o oNo)
= N O
(oo N

CENTER
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JUMP - Accessing the low level objects

CAPD

= Let's get the simplex tableau of the simplex

Model Object

example
JUMP m
In [24]: mpb = m.internalModel # MathProgBase Model ‘l
cpx = mpb.inner # CPLEX Model
tableau = zeros(length(m.linconstr),m.numCols) Ma’[hProgBase mpb
for k in 1l:1length(m.linconstr)
row = CPLEX.get tableau_row(cpx,k-1)
tableaulk,:] = row'
end .
CPLEX.| CpX
tableau
Out[24]: 3x5 Array{Float64,2}:
1.0 -98.0 0.0 -34.0 -10.0
0.0 6.0 1.0 3.0 2.0
0.0 -16.0 0.0 -5.0 1.0
CpX.ptr

CENTER
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JUMP - Accessing the low level objects
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CENTER
= Let’s get the simplex tableau of the simplex Model Object Function
example
JUMP m
In [24]: mpb = m.internalModel # MathProgBase Model ‘l
cpx = mpb.inner # CPLEX Model
tableau = zeros(length(m.linconstr),m.numCols) Ma’[hProgBase mpb
for k in 1l:1length(m.linconstr)
row = CPLEX.get tableau_row(cpx,k-1)
tableaulk,:] = row'
end .
CPLEX.|I CpX get_tableau_row
tableau
Out[24]: 3x5 Array{Float64,2}:
1.0 -98.0 0.0 -34.0 -10.0
0.0 6.0 1.0 3.0 2.0
0.0 -16.0 0.0 -5.0 1.0 .
CpX.ptr CPXbinvarow

21



JUMP - Accessing the low level objects

CAPD

= Let's get the simplex tableau of the simplex
example

In [24]: mpb = m.internalModel # MathProgBase Model
cpx = mpb.inner # CPLEX Model

tableau = zeros(length(m.linconstr),m.numCols)

for k in 1l:1length(m.linconstr)
row = CPLEX.get tableau_row(cpx,k-1)
tableaulk,:] = row'

end

tableau

Out[24]: 3x5 Array{Float64,2}:
1. -98.0 0.0 -34.

CENTER
Model Object Function
JUMP m
MathProgBase mpb
CPLEX.|l CpX get_tableau_row

CpX.ptr CPXbinvarow




JUMP - Extensions

CAPD

= JuMP is written in very few lines of code (9,000) and it is very simple to understand

= [tis not difficult to write extensions
— JuMPeR.|l: for robust optimization
—  MultiJuMP.]l: for multi-objective optimization
— JuMPChance.|: for probabilistic chance constraints
—  StochDynamicProgramming.|l: for discrete-time stochastic optimal control problems
—  PolyJuMP.jl: for polynomial optimization
—  StructJuMP.|l: for block-structured optimization
—  NLOptControl.jl: for formulating and solving nonlinear optimal control problems
—  Complementarity.jl: for complementarity problems
— DSP, Argonne National Lab: Implements decomposition methods for stochastic mixed-integer programs

http://www.juliaopt.org/packages/

CENTER

23


https://github.com/IainNZ/JuMPeR.jl
https://github.com/anriseth/MultiJuMP.jl
https://github.com/mlubin/JuMPChance.jl
https://github.com/JuliaOpt/StochDynamicProgramming.jl
https://github.com/blegat/PolyJuMP.jl
https://github.com/StructJuMP/StructJuMP.jl
https://github.com/huckl3b3rry87/NLOptControl.jl
https://github.com/chkwon/Complementarity.jl
http://www.juliaopt.org/packages/

JUMP - Pros and Cons

CAPD

n
L D

It's new

Fast

Free

Easy and simple source code

Access to low level objects

Built with performance in mind

Support through an active community at
the Julia forums

Plenty of libraries to support your

workflow

Data analysis

Plotting

Statistics

It is also possible to call libraries from
other languages within Julia: Python, C++,
Fortran, R, Matlab, Java, etc

ANANE NN

CENTER
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JUMP - Pros and Cons
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It's new

Fast

Free

Easy and simple source code

Access to low level objects

Built with performance in mind

Support through an active community at
the Julia forums

Plenty of libraries to support your

workflow

Data analysis

Plotting

Statistics

It is also possible to call libraries from
other languages within Julia: Python, C++,
Fortran, R, Matlab, Java, etc

AN

CENTER

Cons
O It's new
U The platform and the supporting packages
are not mature enough
O JuMP version 0.16
 No standard solution report

O Lack of modeling features
O Piecewise (SOS are supported though)
O Disjunctions
O Indicator Constraints

25
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python”

http://python.org/
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http://julialang.org/

Mathematical Modeling in Python CWPD

CENTER
Most Popular Coding Languages of 2016

= High level coding language: mature + stable

. : 15-112 = Taken by many CMU
* Used in production by Google, Facebook, Bl @ undergraduates

IBM, Nasdaq, etc. SR = Python-oriented
» Deep pool of experienced developers

= Enables fast prototyping and integrated work
process

= Many useful libraries:
 Numpy - linear algebra
* Pandas — Data input/output + parsing
* Networkx — Network graph analysis + display p

« PyQt - Graphical User Interface python’

 Matplotlib — plotting results
> SR 26.7%

«  Python interfaces common for external tools ElgglFemmereez  Jesyeine Lews  Suiijsey <Gl

= Ability to aggregate data from multiple sources

cod¢ va\

meodeeva

Carnegie
Mellon

Ullivel'sity 27 /55



Mathematical Modeling in Python CWYPD
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Why Python?

= High level coding language: mature + stable

* Used in production by Google, Facebook, proon
IBM, Nasdag, etc. 3

» Deep pool of experienced developers

= Enables fast prototyping and integrated work d
process p a n a S
;4 3., ey

= Many useful libraries:
 Numpy - linear algebra

¢+

* Pandas — Data input/output + parsing

* Networkx — Network graph analysis + display

* PyQt — Graphical User Interfaces

* Matplotlib — plotting results

* Python interfaces common for external tools .

= Ability to aggregate data from multiple sources

Carnegie
Mellon

Ullivel'sity 28 /55



PyQt tool for model visualization

Carnegie
Mellon

University

CAPD

Pyomo Model Viewer CENTER
Model Solver
Mame \alue L.B. LLB. Type Fixed Active Stale Doc
* SimpleMeaSheet MeaSheet true
links Block true
b absorb Absorber true CO2 absc
F regen Regenerator true Solvent r
b xhx General true Lean/Rict
b reboiler General true Regener:
ko mumix General true Makeup :
sl Constraint false
s2 Constraint false
s3 Constraint false
54 Constraint false
55 Constraint false
s6 Constraint false
s7 Constraint false
b sl.expanded IndexedCons... true
b sZ.expanded IndexedCons... true
b s3.expanded IndexedCons... true
b sd.expanded IndexedCons... true
b s5.expanded IndexedCons... true
b s6.expanded IndexedCons... true
b s7.expanded IndexedCons... true
mea_hZo_ratio 01124 Var true true true
eq_mea_hZo_ratio Constraint true
eq_mumix_y Constraint true
int_cuts IndexedCons... true
tmp_int_cuts IndexedCons... true
Courtesy of John Eslick, NETL
1 4
0K
29 /55



Why Python? (cont.) CWPD
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Tools for effective model stewardship

* Programmatic documentation generation
» Easily generate webpage with code and
model documentation
= Standardized code style guide (PEP8)
e Automatic code formatting
* Makes models more consistently
readable to multiple users
= Software version control (Git)

Automatic testing

« Ensures that future changes do not =>
silently break existing functionality Q-. 4

SPHINX

PYTHON
DOCUMENTATION
GENERATOR

« |dentifies affected code

* Automatically executed when changes
made to code

= Facilitates management of change from user
to user

Carnegie
Mellon

&« = ED ril-e:,f,f,fhorr;e,fqmthe-(.,fg_itﬂda-ss—mode-l;-d;(sf_bkjild,fhtr;il/superstr\;m?e..htrr_w.l#idae;_mndels.p}o(s.;:.::un-1}_ D. B O O :

# IDAES

& Models
Solvent Unit Mdslgls

Superstructure SynthestsModels

IMhamalnratharlair!  lavamnlac hirml

S

Bl Research Journal- x /' [ SuperstructureSyr x { () Network Graph:g' x { () pyomoyPyomoMor X

Raises: NotImplementedError - if anunexpected solver solutionstatusis
found

solve_local_MIP(tee=False) [source]

Solves the non-rigorous lower-bounding MIP problem

The MIP is used as part of the LOA algorithm to determine a new
configuration for further assessment. The lower bound provided by this
function is not rigorous because of OA cuts on potentially nonconvex
functions. For the OA cuts, the equality relaxation with an augmented
penalty function method is applied.

Parameters: tee(bool, aptional) - flag for verbose solver cutput
Returns: True if feasible solution found. False otherwise.

Return type: bool

solve_local_NLP(tee=False, keepfiles=False)  [source]

Solves the nonlinear program for a fixed flowsheet configuration

This NLP is used as part of the LOA algorithm to assess a given flowsheet
configuration.

The solver in this case is a local optimization solver, so it is not
guaranteed to find the best possible solution for the configuration.
However, any feasible solution found represents a potential upper bound
on the objective value, so it is updated correspondingly.

If a feasible solution is found, its values are loaded back into the model
objects.

Parameters: = tee(bool optional) - flag for verbose solver output
* keepfiles (bool optional) - flag to keep temporary solver
files

University
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Why Python? (cont.)

CAPD

Automatic testing

to user

Carnegie
Mellon

: : CENTER
Tools for effective model stewardship
. . X Compare with...
Programmat'c documentat'on generatlon Mark selection For comparison
. . lecti
 Easily generate webpage with code and compere selection
model documentation o
Standardized code style guide (PEP8) ——
. . Select All
 Automatic code formatting -
Open Containing Folder...
* Makes models more consistently Copy File Path
readable to multiple users Revealin side Bar
. . Goto Definition
Software version control (Git) Goto Assignment
Find Usages
Show Documentation
« Ensures that future changes do not Rename object under cursor
| tl b k . t f t It Show error list
silently break existing functionality S —
- Identifies affected code Previous lint error
« Automatically executed when changes McCabe complexity check
made to COde Auto import undefined word under cursor
Run tests on current file
= Facilitates management of change from user Run full project tests=suite
Run test under the cursor
Repeat last test run
31/55
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Why Python? (cont.) CWPD

gichen@QC-CMU-Tower:~/git/super$ nosetests > ~ftest.log CENTER
Tools for effective model Stewardship nose.config: INFO: Ignoring files matching ['~\\.', '~ ', 'Asetup\\.pvS$']
test case 1 (idaes _models.process.superstructure synthesis.methanol.blocks.tests.test

compressor.TestCompressor) ... ok

n Programmatic documentation generation Eest_case_z (idaes_models.process.superstructure_synthesis.methanol.blocks.tests.test
_compressor.TestCompressor) ... ok
i i test case 1 (idaes_models.process.superstructure synthesis.methanol.blocks.tests.test
* Easily generate We_bpage with code and Flash.testFlash) <. ok
model documentation test case 2 (idaes models.process.superstructure synthesis.methanol.blocks.tests.test
_flash.TestFlash) ... ok
=  Standardized code Sty|e guide (PEP8) test_case_1 (idaes_models.process.superstructure_synthesis.methanol.blocks.tests.test
reactor.TestReactor) ... ok
° Automatic code formatting test LOA (idaes _models.process.superstructure_synthesis.methanol.test main.TestMethan
ol) ... ok
s Makes models more consistently test case pb (idaes models.process.superstructure synthesis.rpb.blocks.tests.test pac
. ked bed.TestPackedBed) ... ok
readable to multiple users test_case_rpb (idaes_models.process.superstructure_synthesis.rpb.blocks.tests.test_pa
p . _rp L P P _Sy P _p
cked bed.TestPackedBed) ... ok
= Software version control (G|t) test_Orpb_1pb (idaes_models.process.superstructure_synthesis.rpb.test_rpb_main.TestPa
ckedBed) ... ok
[ Automatic testing test_1irpb_opb (idaes_models.process.superstructure_synthesis.rpb.test_rpb_main.TestPa
ckedBed) ... ok
s Ensures that future changes do not _ B i L .process.superstructure_synthesis.rpb.test rpb main.TestPa
Silently break existing functionality test_erb;é[;b (idaes_models.process.superstructure_synthesis.rpb.test rpb_main.TestPa
ckedBed) ... ok
° Identifies affected code test_default_LOA (idaes_models.process.superstructure_synthesis.ruiz_water.test_main.
TestWater) ... ok
° Automatically executed when changes test _trial®l LOA (idaes models.process.superstructure synthesis.ruiz water.test main.

TestWater) ...

made to code

* Facilitates management of change from user Ran 14 tests in 7.828s

to user 0K
gqichen@QC-CMU-Tower:~/git/super$ |

Carnegie
Mellon
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Pyomo: Python Optimization Modeling Objects

CAPD

-

X .
)-PYOMO

Solver Interfaces

CPLEX

Gurobi

Meta-Solvers
* Generalized Benders
* Progressive Hedging
e Linear bilevel
* Linear MPEC

Core Optimization
Objects

Modeling Extensions

* Disjunctive programming
e Stochastic programming
* Bilevel programming

* Differential equations

* Equilibrium constraints

Core Modeling
Objects

Model
Transformations

Xpress

GLPK

CBC

BARON

OpenOpt

NEOS

AMPL Solver Library

Ipopt

KNITRO

Bonmin

Couenne

Carnegie

Mellon

CENTER

Python library for optimization

Key optimization objects
e Sets
e Variables
« Parameters
e Constraints

e Objective
e Model
 Solvers

Able to manipulate core
modeling and optimization
objects

University
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Mathematical Modeling in Pyomo CYPD

Pyomo features

CENTER

) # simple.py
= Pyomo library offers from pyomo.environ import *
algebraic modeling
language (like AMPL and M = Concretelodel()
M.x1 = Var()
_G‘AMS) an_d solver M.x2 = Var(bounds=(-1,1))
interfaces in Python M.x3 = Var(bounds=(1,2))
= All fi M.cl = Constraint(expr=M.x1 == M.x2 + M.x3)
OWS programmatic Mo = Objective(
access to modeling objects expr=M.x1*¥*2 + (M.x2*M.x3)**4 + \
(sets, variables, constraints, M.x1*M.x3 + \
.o
etc.) M.x2*¥sin(M.x1+M.x3) + M.x2)
e Enables advanced opt_result = SolverFactory(“ipopt’).solve(M)
model design opt_model = M

Carnegie
Mellon

Ullivel'sity 34/55



Pyomo advantages CWPD

Features

= QOpen source + free to

use/modify commercially
= Modeling extensions Modeling extensions cop }

CENTER

MINLP big-M

« Pyomo.GDP
Pyomo.DAE = GDP automatic reformulations

MINLP Hull Reform.

. PySP (stochastic) = Express DAE in terms of differential

equations
* Bilevel programming = PySP: support for scenario generation
= Strong support for modular and progressive hedging algorithm
modeling = Ability to build models at high level of

= Ability to perform programmatic abstraction

model transformations

= Allows use of advanced
solution algorithms

Carnegie
Mellon

Ullivel'sity 35/55



Modular Modeling CWYPD

Traditional modeling approach Object-oriented modeling
Advantages of modularity Flowsheet object
Set declarations | ] Data

.- . Global sets | | Global params _
= Ability to create nested unit

CENTER

Y

models sy Data > ::% |, | Global constraints | | Global specs
=  Each unit model has its own -1 .g Feed object | | Splitter object Mixer object
namespace bata > ¢ |\ || [E | | BOE || BWOE
0
<
* No need to keep track of Constraint declarations [« | . J| & ||| Compressor object
T1, T2, T3... s 1| CECE
* Instead: reactor.T, flash.T Specifications N Data > Multi-stage compressor object
= Easier maintenance of unit ]
models Compressor Cooler Compressor
= Ability to test models LECOE) DECE || OECE

independently [Feed >—[

Prod

!

Chen, Qi; Grossmann, IE. “Recent Developments and Challenges in Optimization-Based
Figure from Flowsheet Synthesis.” Annual Review of Chemical and Biomolecular Engineering. In press,
expected July 2017.

Carnegie

Mellon
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Programmatic model transformations CWHPD

CENTER

Code

Dynamic model transformations

= Utility functions to add linear } for s in streams:

relaxations for ¢ in components:

= Dynamic activation or
deactivation of nonlinear
expressions

= Automatic generation and v

addition of linearizations

add_mccormick relaxation(mc_flow_block,
z=fc[comp, s], x=F, y=mole frac[c, s], nsegs=5, (s, c))

= Model state introspection Result

* Propagation of fixed

variables Automatically adds variables and equations for a 5-
« Deactivation of redundant segment piecewise McCormick relaxation for the
constraints bilinear relation f, ¢ = F;x; for each component ¢ and
stream s

Carnegie
Mellon

University 37/55



Programmatic model transformations CWHPD

Dynamic model transformations Nonlinear constraint deactivation/reactivation

= Utility functions to add linear Model.deactivate _nonlinear constraints()
relaxations

= Dynamic activation or }

CENTER

Model.reactivate nonlinear_ constraints()

deactivation of nonlinear

expressions v

= Automatic generation and

addition of linearizations I ..
mplication

= Model state introspection
= Required in order to switch between linearized and nonlinear

forms of model for LOA

= Dynamically detects which equations are nonlinear (vs. linear
due to fixed variables)

= Ability to remember which equations need to be reactivated

* Propagation of fixed
variables

e Deactivation of redundant
constraints

Carnegie
Mellon

University 38 /55



Programmatic model transformations CWHPD

CENTER

Code

Dynamic model transformations

= Utility functions to add linear Model.apply OA strategy()
relaxations -
: L Model.add oa cuts()
= Dynamic activation or
deactivation of nonlinear

expressions v

= Automatic generation and }

addition of linearizations
Result

= Model state introspection

. Propagation of fixed = Analyzes nonlinear expressions and computes Jacobians

variables = Evaluates the Jacobians at the current variable values when
add_oa_cuts is called in order to construct the outer

e Deactivation of redundant : . :
approximation constraints

constraints
= Automatically adds the OA constraints to the model

Carnegie
Mellon

University 39/55



Programmatic model transformations CWHPD

Dynamic model transformations Code

= Utility f_unctions to add linear Model.propagate var fix(tmp=True)
relaxations

CENTER

: L Model.introspect_flows()
= Dynamic activation or

deactivation of nonlinear

expressions v

= Automatic generation and

addition of linearizations
Result

= Model state introspection
= Looks for simple constraints of form A = B. If A or B is fixed,

then fix the other variable to the same value. Propagates for all
members of the equality set

* Propagation of fixed
variables

e Deactivation of redundant

constraints = |Looks to see if a stream has all of its flow variables deactivated.

If so, deactivates the constraints associated with the stream.

e Avoids redundant equations, making NLP solver more
robust
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Implementation of logic-based outer approximation (LOA) CHPD

CENTER

4
[
4
w

build_model()

\ 4
N
v
SN

apply OA strategy()

solve set_cover MIP() = Comput? + activate set covering
objective

Activate linearizations

Deactivate nonlinear constraints
Deactivate fathomed units
Deactivate OA cuts

Solve MIP

Reactivate OA cuts
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Implementation of logic-based outer approximation (LOA) CHPD

CENTER
build_model() -
> .

apply OA strategy()

> solve_set _cover MIP() = Activate normal objective
- B * Activate relevant nonlinear constraints
solve_local_NLP() = Deactivate linearizations

= Deactivate OA cuts

= Apply NLP initialization strategy

= Propagate fixed variables

= Introspect flows

= Deactivate trivial constraints

= Set minimum flows

= Solve NLP

= Unset minimum flows

= Undo pre-solve model transformations
= Update upper bound

= Save values if best so far

= If not optimal, reinitialize + try again
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Implementation of logic-based outer approximation (LOA) CHPD

build model()

apply OA strategy()

solve set _cover MIP()

solve local NLP()

add_oa_cuts()

Carnegie
Mellon

" 2

!

\ 4
IS

Evaluate Jacobians

Generate + add outer approximation
(OA) constraints corresponding to all
nonlinear constraints

University
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Implementation of logic-based outer approximation (LOA) CHPD

" 2

build_model()

\ 4
IN

apply OA strategy()

solve_set_cover_MIP() = Generate + add integer cut

solve local NLP()
add_oa_cuts()

add_int_cut()
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Implementation of logic-based outer approximation (LOA) CHPD

ol 1 o 3 CENTER

- -

= Loop until all units covered

build_model()

apply OA strategy()

solve set _cover MIP()

solve local NLP()
add_oa_cuts()

add_int_cut()
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Implementation of logic-based outer approximation (LOA) CHPD

ﬂ | 3 CENTER
e —~—
apply OA strategy()

= Activate augmented Lagrangian OA
} init_LOA() objective

= Activate linearizations
} = Deactivate nonlinear constraints

= Deactivate fathomed units
= Activate OA cuts
= Solve MIP

= Update lower bound

build_model()
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Implementation of logic-based outer approximation (LOA) CHPD

In CENTER
build model() . .
apply OA strategy() n

= Activate normal objective
} = Activate relevant nonlinear constraints
= Deactivate linearizations
= Deactivate OA cuts
} = Apply NLP initialization strategy
= Propagate fixed variables
= Introspect flows
} = Deactivate trivial constraints
= Set minimum flows

= Solve NLP

= Unset minimum flows

= Undo pre-solve model transformations

= Update upper bound

= Save values if best so far

= If not optimal, reinitialize + try again

Carnegie
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Implementation of logic-based outer approximation (LOA) CHPD

In CENTER
build_model() R .
apply OA strategy() n

= Evaluate Jacobians
init_LOA i i
} IR = Generate + add outer approximation
(OA) constraints corresponding to all
} nonlinear constraints
> R

if optimal

} add_oa_cuts()
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Implementation of logic-based outer approximation (LOA) CHPD

In CENTER
build_model() R .
apply OA strategy() n

= Generate + add integer cut
} init_LOA()
} solve local MIP()
} solve_local NLP()

if optimal

} add_oa_cuts()
} add_int_cut()
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Implementation of logic-based outer approximation (LOA) CHPD

3 CENTER

\ 4
o
A 4

build_model()

v
N
\ 4
N

apply OA strategy()

= Loop until upper bound and lower bound
> B |
14—

if optimal

>
> I |

loop
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Implementation of logic-based outer approximation (LOA) CHPD

build_model()

apply OA strategy()

Carnegie
Mellon
University

4
} solve local MIP()

loop

\ 4
1SN

Loop until upper bound and lower bound
converge
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Implementation of logic-based outer approximation (LOA) CHPD

>

build_model()

apply OA strategy() _L’n

= Loop until upper bound and lower bound
> B |
14—

if optimal

>
> I |

loop = Pyomo allows for

Conclusion advanced algorithm
development
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Pyomo current shortcomings CWPD

CENTER

Opportunities for growth

= Does not ship with solvers
» Can be difficult for novice users to install solvers and set up solver licensing
= Lack of pre-processor [active development]

= Documentation is sparse for advanced usage and modeling extensions: difficult learning curve past basic
modeling

* Plugin system is complex: difficult to figure out how to contribute new plugins
= Best practices for saving/loading of model state currently unclear

* Would be useful in some multiprocessing applications
= Backwards compatibility of new releases not guaranteed

* Old release will remain usable, but without newer features
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Conclusions + Remarks

CAPD

When to use Pyomo

= Perform data input, cleaning, problem
formulation, optimization, analysis, and
visualization in integrated workflow

= Construct models at a high level with
advanced concepts and apply custom
transformations into algebraic forms (GDP,
DAE, stochastic, bilevel)

= Development or prototyping of advanced
multi-step solution algorithms

= Second layer to traditional AMLs

Carnegie
Mellon

University

This work was conducted as part of the Institute for the Design of Advanced Energy Systems (IDAES) with funding from the Office of Fossil
Energy, Cross-Cutting Research, U.S. Department of Energy.

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United
States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

When not to use Pyomo

= Model solution time in deployment is
dominated by model compilation time

= Require access to certain unavailable
solvers, e.g. DICOPT

= Individual solver licensing and deployment
Is a headache

= Onerous conversion cost

CENTER

IDAES

54 /55



Pyomo and JuMP are excellent
open source modeling

COHC‘ USiOn environments embedded in

fully featured programming
languages, suitable for users at
IREVYER




Appendix




JUMP - Quick Installation Guide CWYPD

CENTER

1. Download and install Julia
a. http://julialang.org/downloads/
b. You can also try it without installing it at JuliaBox.com

A fresh approach to technical computing
Documentation: http://docs.julialang.org
Type “?help" for help.

2. Insta” \JUMP k . . | v Version 0.5.1 (2017-03-85 13:25 UTC)

0fficial http://julialang.org/ release

a. julia> Pkg.add(*JuMP”) ) Mt

3. Install your favorite solver (example CPLEX)
a. http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud
b. You need to get your license

4. Install the julia package for your solver
a. julia> Pkg.add(“CPLEX")

57
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Pyomo — Installation and References CWPD

CENTER

= https://www.python.org/downloads/

Install Python = Alternative implementations also popular, especially Anaconda:
https://www.python.org/download/alternatives/

= http://www.pyomo.org/installation

Install Pyomo = pip install pyomo

= |POPT: https://www.coin-or.org/lpopt/documentation/node10.htmi

Install Solvers =  Gurobi: http://www.qgurobi.com/reqistration/download-req

= Pyomo docs: http://www.pyomo.org/documentation

Beferences = Help forum: https://groups.google.com/forum/#!forum/pyomo-forum
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