

1

Modern Robust Optimization: Opportunities for Enterprise-Wide Optimization

Chrysanthos E. Gounaris

Dept. of Chemical Engineering and Center for Advanced Process Decision-making Carnegie Mellon University gounaris@cmu.edu

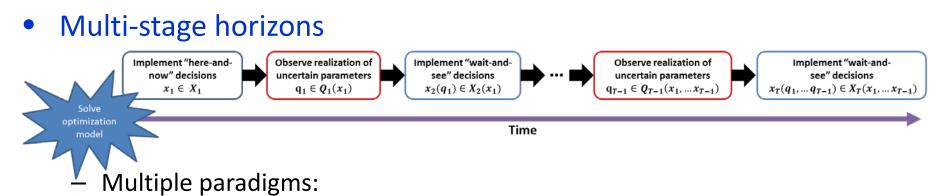
> Thursday, September 7 EWO Seminar Fall 2017 Series

Uncertainty in EWO Setting

- Uncertainty is inherent in virtually all EWO settings, both strategic and operational ones
- Typical sources of uncertainty:
 - Market behavior
 - e.g., prices, customer demands
 - Unexpected events
 - e.g., disruptions
 - Model-system mismatch
 - e.g., unknown thermodynamics and/or kinetics
- Optimization in view of only the nominal case can lead to suboptimal/infeasible solutions
 - \rightarrow Need for risk-averse decision-making

Carnegie Mellon III ENGINEERING Challenges for EWO under Uncertainty

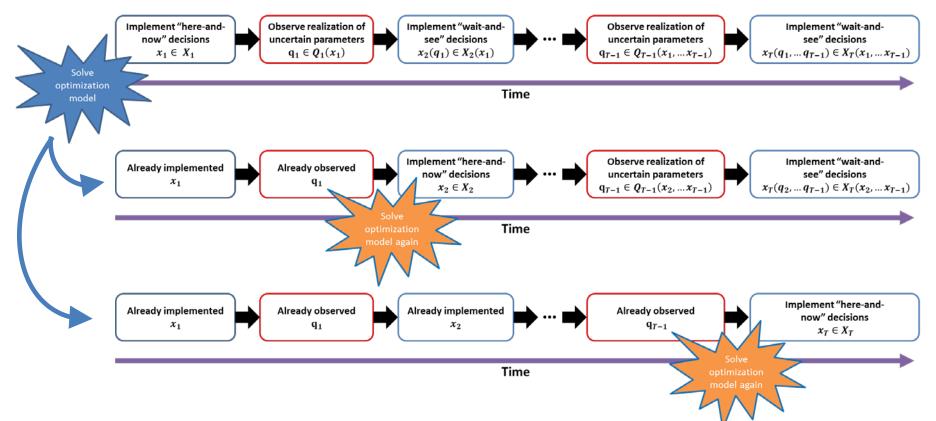
- Large combinatorial component
 - Mixed-integer models with lots of discrete decisions
 - Often custom-built approaches (decomposition, branch-and-cut/price, etc.)
 - Discreteness also prevalent on the side of uncertain parameters



- Invest now, then operate every fiscal year
- Place/receive order now, then route material through the supply chain
- Decide control actions for the whole control horizon
- Set up a DSS to work autonomously in a rolling horizon fashion
 - Re-optimization round-the-clock, as often as you can afford

Multi-stage Horizons (cont'd)

- Re-optimization frequency dictated by tractability
- Number of stages dictated by need to locate "better solutions"



- Need high-quality "wait-and-see" decisions (prepare to adopt them!)
- "Closed-loop feasibility" is more likely as you account for more stages

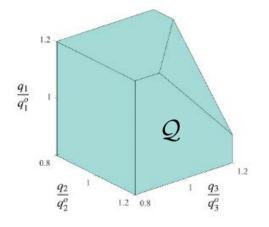
Robust Optimization

- Game theory interpretation:
 - Player 1 (decision-maker) tries to minimize the objective
 - Player 2 (adversary nature) tries to minimize feasibility margin
- Foundations in "pessimistic optimization" (Wald, Soyster)
 - Attempts to find the solution that would perform best in the "worst-case"
 - The above implies that the solution must remain feasible under all cases we want to insure against (uncertainty set)

• Some references to start with:

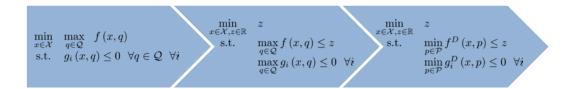
- A. Ben-Tal, L. El Ghaoui and A. Nemirovski (2009). Robust Optimization. Princeton University Press
- D. Bertsimas, D.B. Brown and C. Caramanis (2011). Theory and Applications of Robust Optimization. SIAM Review, 53(3):464
- B.L. Gorissen, I. Yanikoglu and D. den Hertog (2015). A Practical Guide to Robust Optimization. Omega, 53:124
- C.E. Gounaris (2017). Advances in Robust Optimization and Opportunities for Process Operations. In: Proceedings of FOCAPO 2017/CPC IX, Paper ID IF110

• a.k.a. "Static" Robust Optimization



Reformulation Approach

 Address semi-infinite formulation via duality-based treatment of inner problems



Robust Cutting-Plane Approach¹

- Given a (feasible or relaxed) solution, solve a separation problem to identify realizations from within the uncertainty set for which this solution violates a constraint
- Gradually enforce robustness by adding select deterministic constraints using violating realizations

The problem can be solved "monolithically," via direct call to an appropriate optimization solver

- Restricted to settings where strong duality holds
- The size of the problem grows a lot (unnecessarily?) as the uncertainty set dimensionality grows

- Can accommodate non-standard settings, e.g.,
 - discrete uncertain parameters
 - non MathOpt-based solvers
- Requires more elaborate implementation (and lots of "tuning")

Robust Optimization

- When to consider:
 - When you can routinely solve the deterministic problem
 - Feasibility is important
 - Safety reasons
 - Cannot monetize infeasibility
 - Large number of parameters that only sparsely participate in constraints
 - Stochastic description of uncertainty meets certain criteria
 - No detailed (joint) probability distributions
 - Well-motivated, strong correlations among parameters
- Size and shape of uncertainty set is chosen by the modeler
 - Usually some norm-based set (e.g., interval, ellipsoid, box)
 - No explicit requirement for scenarios and/or probability distributions
 - If distributional information exists, uncertainty sets can be related to confidence intervals

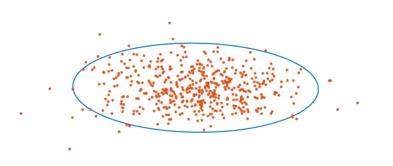
Examples of Uncertainty Sets

Ellipsoids

Carnegie Mellon

Gaussian confidence intervals

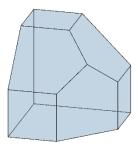
$$\mathcal{Q}_E = \left\{ \boldsymbol{q} \in \mathbb{R}^n : (\boldsymbol{q} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1} (\boldsymbol{q} - \boldsymbol{\mu}) \leq \beta \right\}$$



Budget sets

aggregate forecasts at various hierarchies

$$\mathcal{Q}_{B} = \left\{ \boldsymbol{q} \in \left[\boldsymbol{q}, \boldsymbol{\bar{q}} \right]^{n} : \sum_{i \in B_{l}} \boldsymbol{q}_{i} \leq b_{l}, \ \forall l \in \{1, \dots, L\} \right\}$$

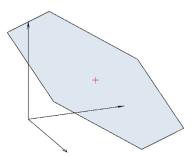


Factor models

bounded disturbances around nominal values

$$\mathcal{Q}_F = \left\{ q \in \mathbb{R}^n : q = q^0 + \Phi \boldsymbol{\xi} \text{ for some } \boldsymbol{\xi} \in \boldsymbol{\Xi} \right\}$$
$$\boldsymbol{\Xi} = \left\{ \boldsymbol{\xi} \in [-1, 1]^F : \left| e^\top \boldsymbol{\xi} \right| \le \beta F \right\}, \quad F \ll n$$

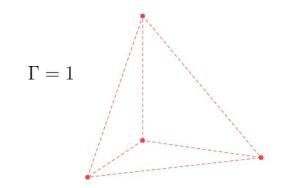
- "zero-net-alpha" models in portfolio optimization

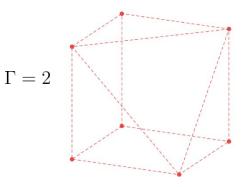


Examples of Uncertainty Sets

- Cardinality-constrained sets
 - "Gamma" sets (Bertsimas & Sim, 2004)

 $\mathcal{Q}_{\Gamma} = \left\{ q \in \left[q^0, q^0 + \hat{q} \right] : \exists W \subseteq \{1, \dots, n\}, \ |W| \le \Gamma : \mathbf{q}_i = \left\{ \begin{array}{cc} q_i^0 + \hat{q}_i, & \text{if } i \in W \\ q_i^0, & \text{if } i \notin W \end{array} \middle| \forall i \in \{1, \dots, n\} \right\} \right\}$





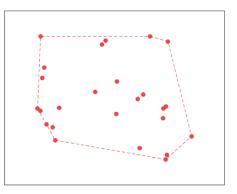
Discrete sets

Carnegie Mellon

FFRING

Collection of relevant scenarios

$$Q_S = \{q^{(1)}, q^{(2)}, \dots, q^{(M)}\}$$



Polyhedral Uncertainty Sets

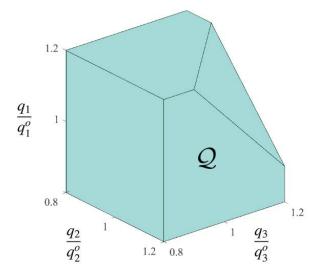
Advantages:

Carnegie Mellon

INEERING

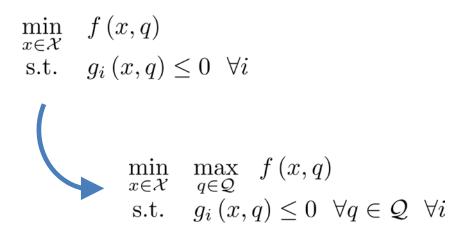
- Numerically tractable, maintaining class of deterministic counterpart
- Derivable from historical data via machine learning techniques
- Can always be used as approximations of non-polyhedral sets

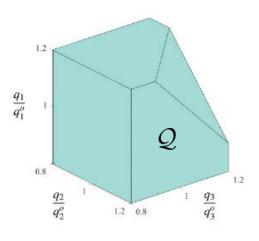
$$\mathcal{Q} = \left\{ \begin{array}{l} q \in \mathbb{R}^{nq}, \ p \in \left\{0,1\right\}^{np} : \\ Hq + Gp \le d \\ q^{L} \le q \le q^{U} \end{array} \right\}$$



• a.k.a. "Static" Robust Optimization

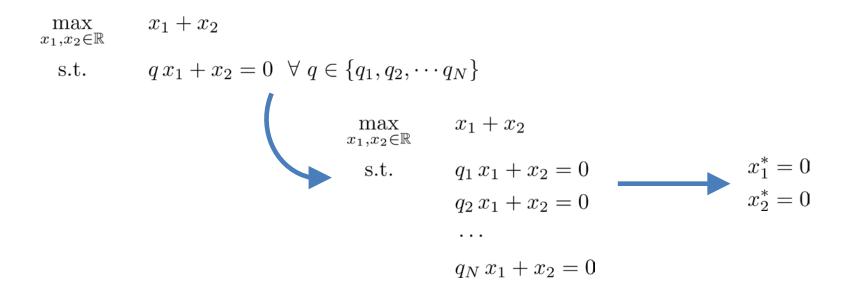
Carnegie Mellon





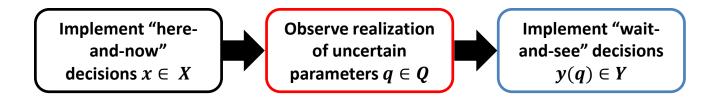
- <u>Main limitation</u>: All decisions are considered as "here-and-now" (irrespectively of whether the application mandates this or not)
- Consequently, we cannot enforce equalities involving uncertain parameters (e.g., mass balances with uncertain reaction rates)

• SRO affords us only a single value (solution) for each decision variable, making it hard to satisfy an equality constraint that references an uncertain parameter for all its realizations



State-variable elimination could sometimes remedy the issue

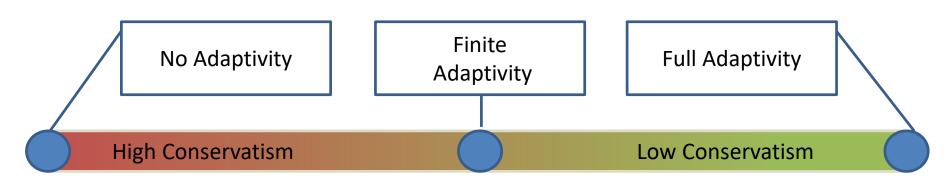
• "Adjustable" Robust Optimization

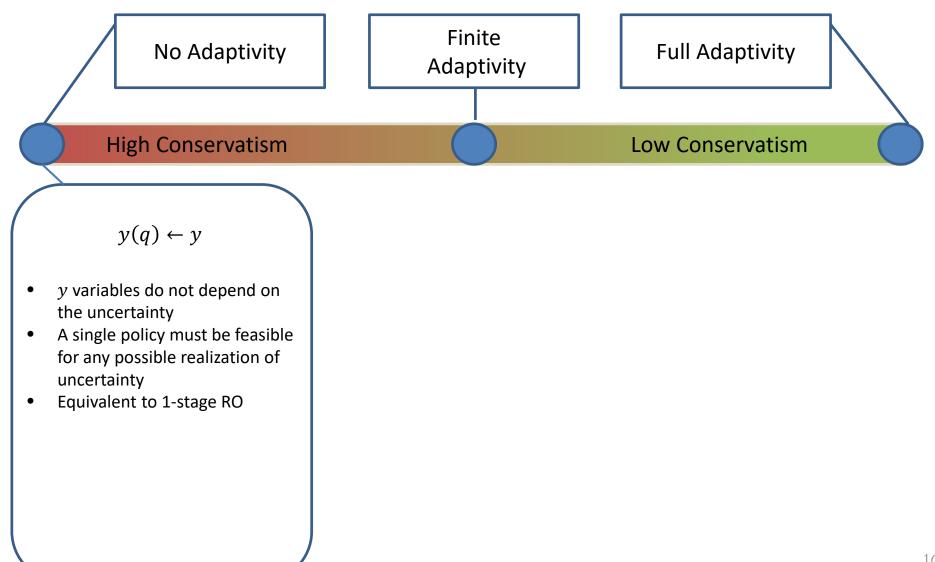


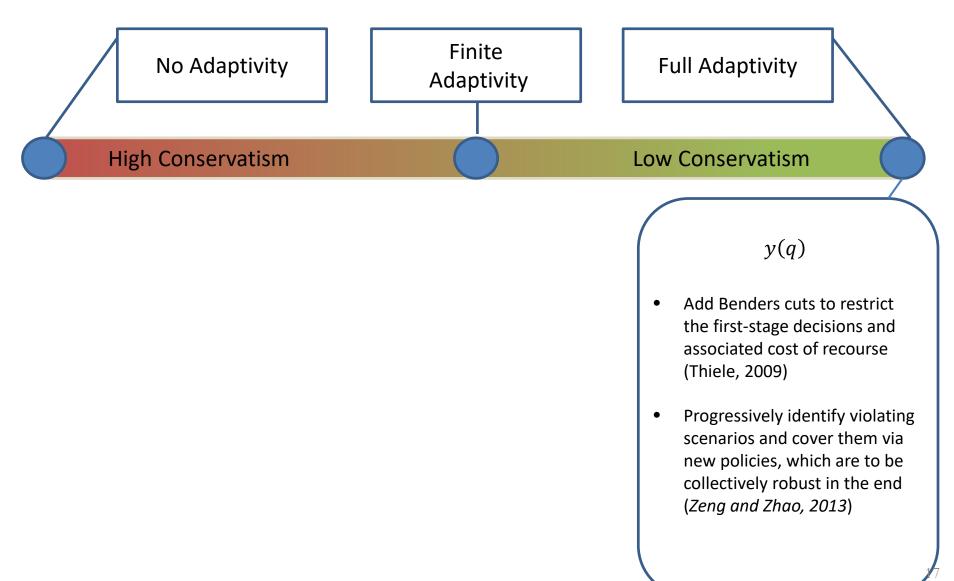
$$\min_{x \in \mathcal{X}} \max_{q \in \mathcal{Q}} \min_{y(q) \in \mathcal{Y}} \quad f(x, y, q)$$

s.t.
$$g_i(x, y, q) \le 0 \quad \forall q \in \mathcal{Q} \quad \forall i$$

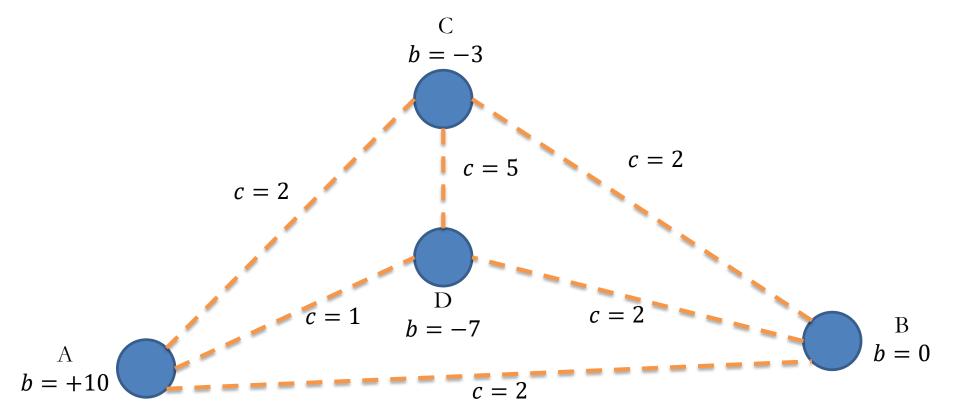
- A specific y may be optimal for a scenario q, but suboptimal for a scenario q'
- Best y(q) may correspond to any arbitrary functional dependence
- Ideally we would like to identify the best feasible *y* for each possible *q*



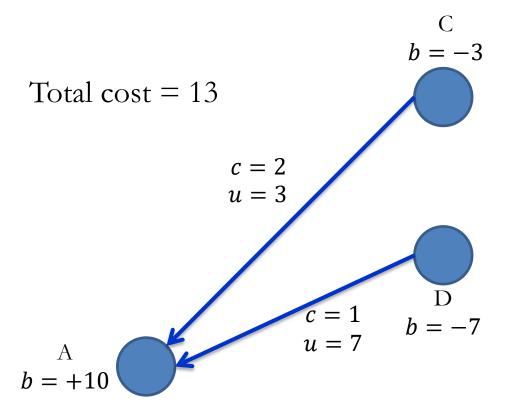


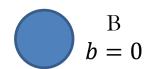


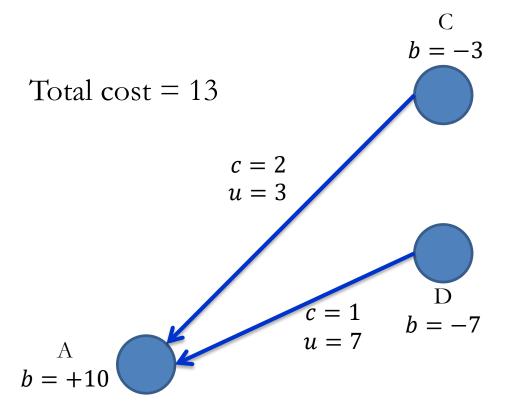
Consider the transportation of a commodity between four locations

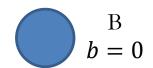


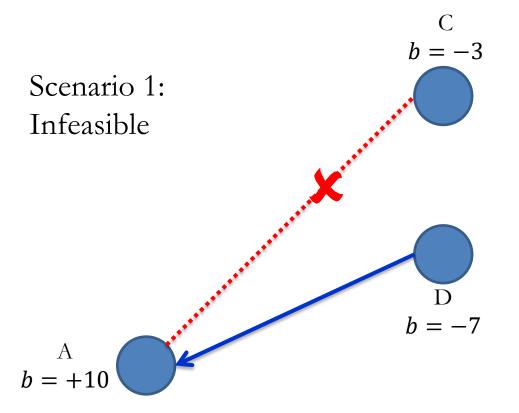
Optimal solution is to build exactly two links

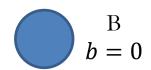


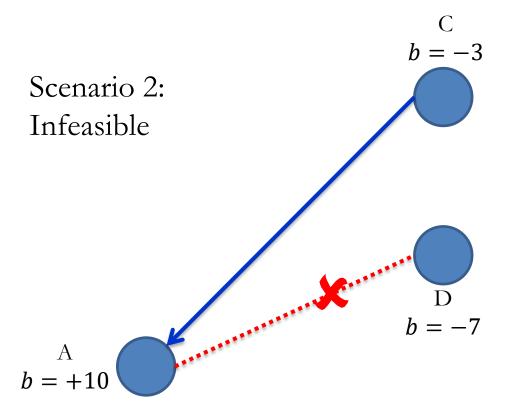


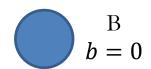


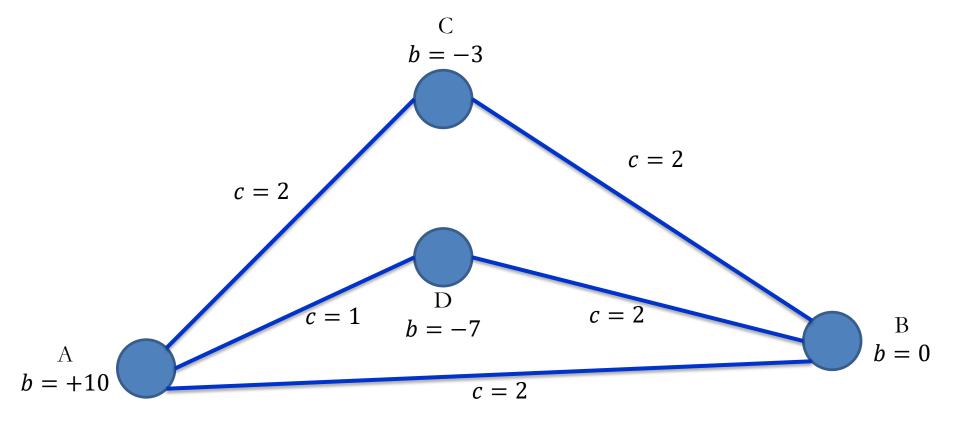


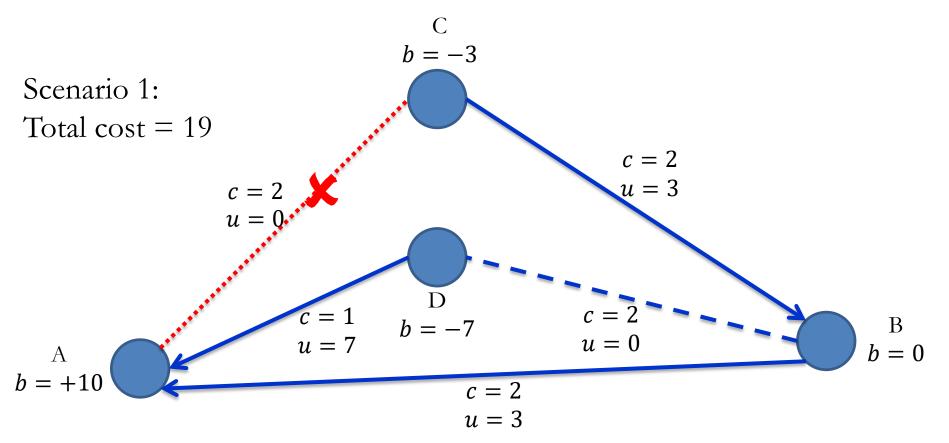


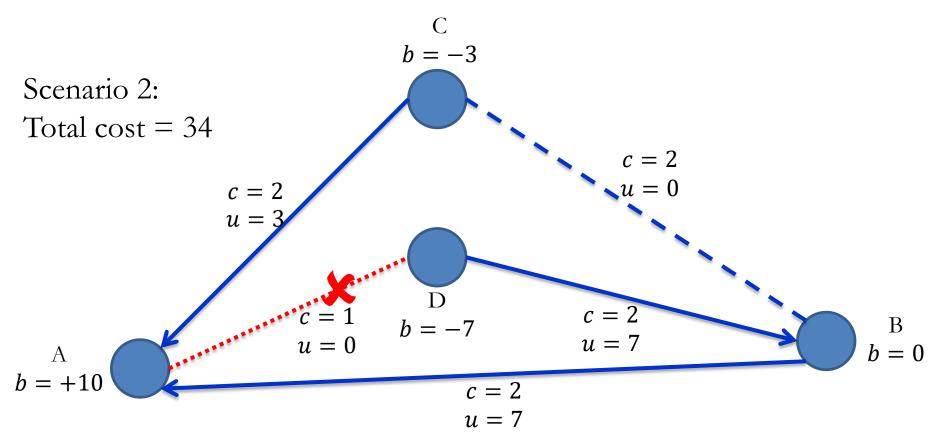


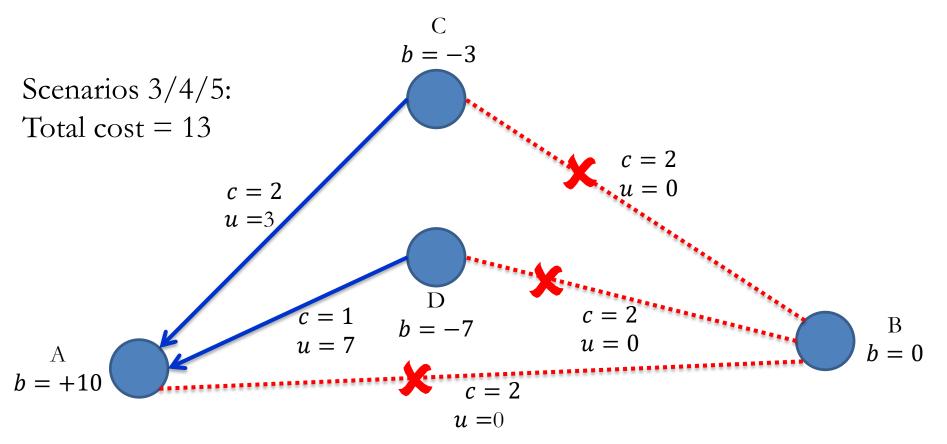




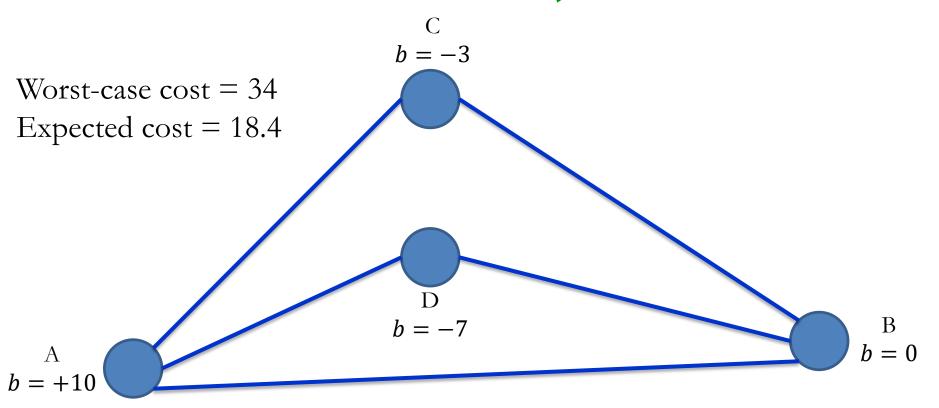




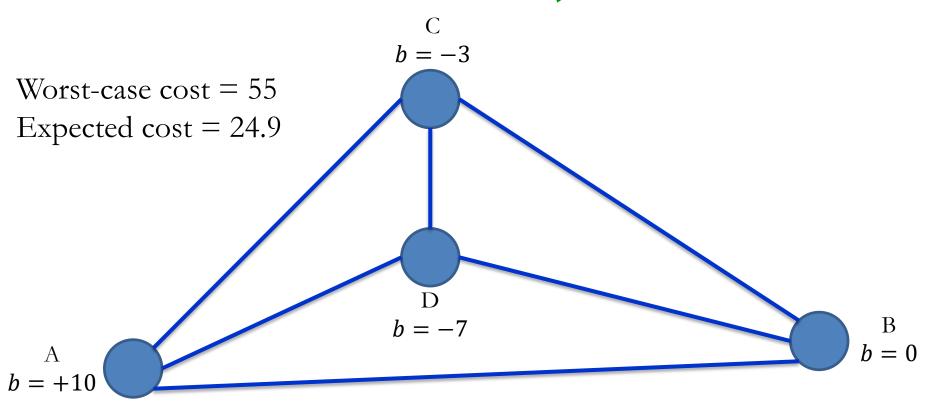




Robust (up to 1 disrupted links) Network

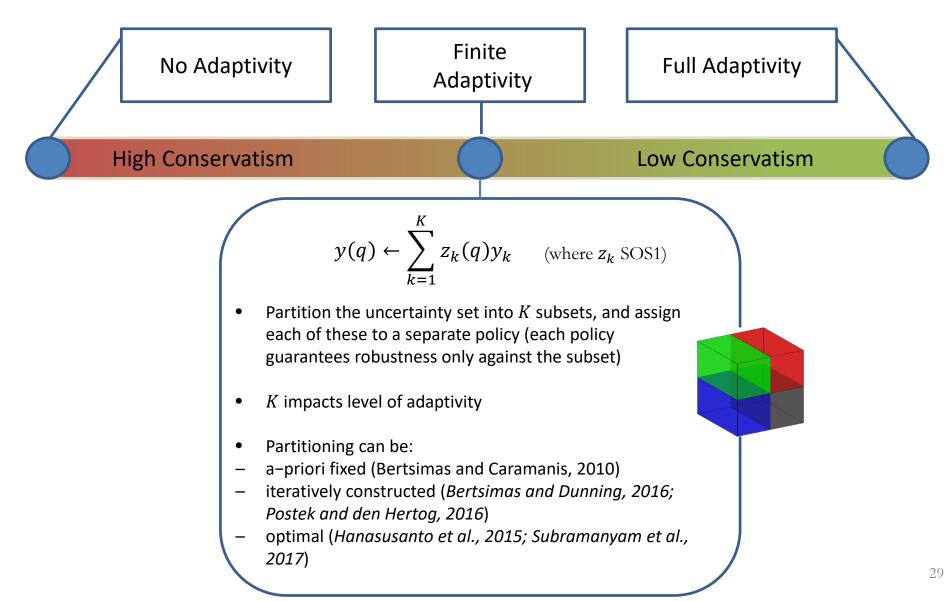


Robust (up to 2 disrupted links) Network

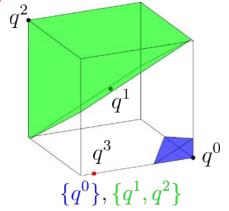


Apply C&CG to solve this problem on a larger scale!

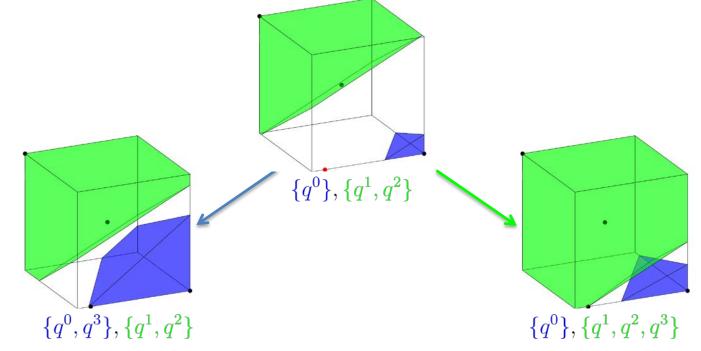
L.R. Matthews, C.E. Gounaris and Y.G. Kevrekidis (2017). Designing Networks with Uncertain Edge Failures Using Two-Stage Robust Optimization. Under Review



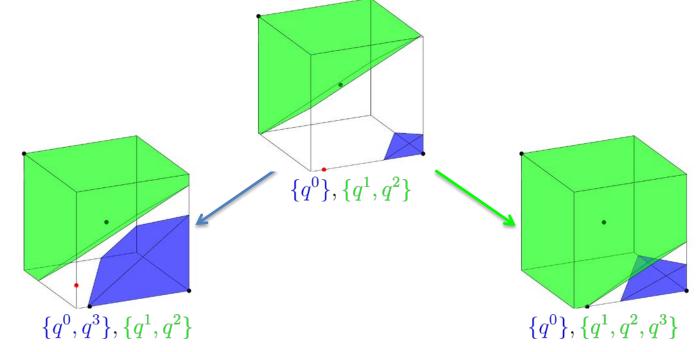
- Example with K = 2
 - Blue region = insured by policy 1, green region = insured by policy 2
 - Black points = scenarios enforced, red points = new scenarios identified



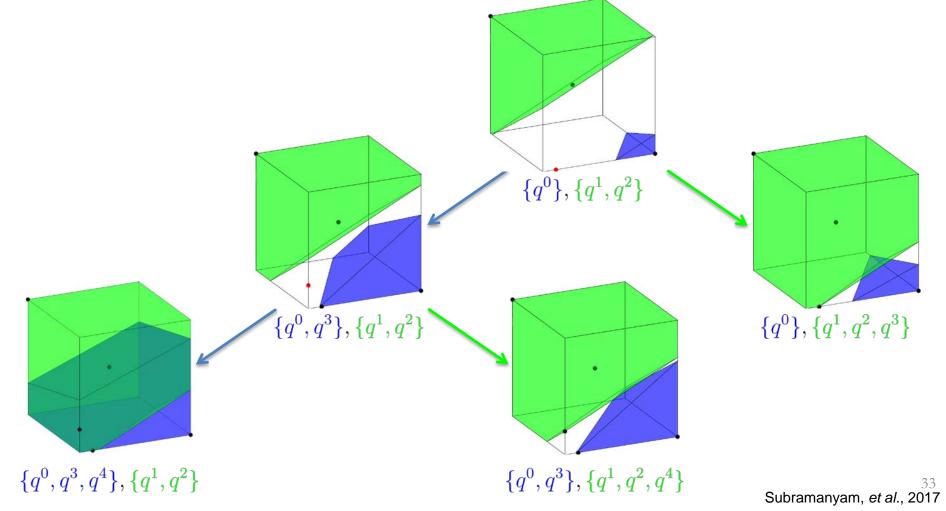
- Example with K = 2
 - Blue region = insured by policy 1, green region = insured by policy 2
 - Black points = scenarios enforced, red points = new scenarios identified



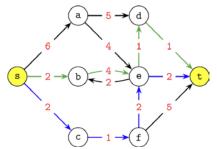
- Example with K = 2
 - Blue region = insured by policy 1, green region = insured by policy 2
 - Black points = scenarios enforced, red points = new scenarios identified

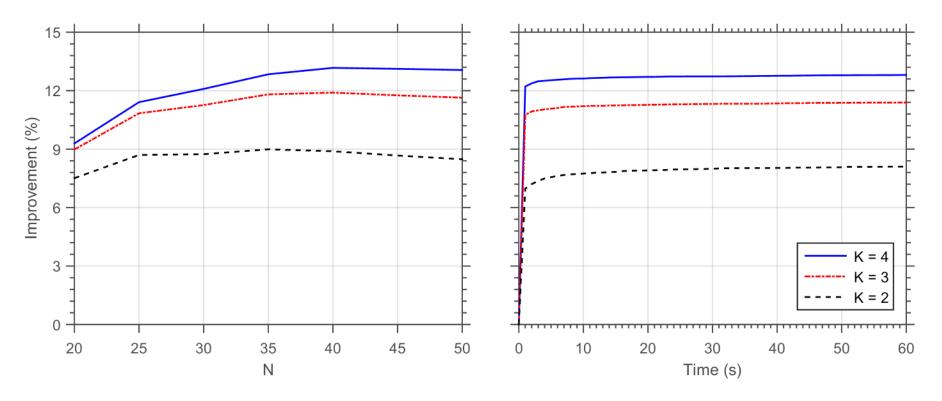


- Example with K = 2
 - Blue region = insured by policy 1, green region = insured by policy 2
 - Black points = scenarios enforced, red points = new scenarios identified



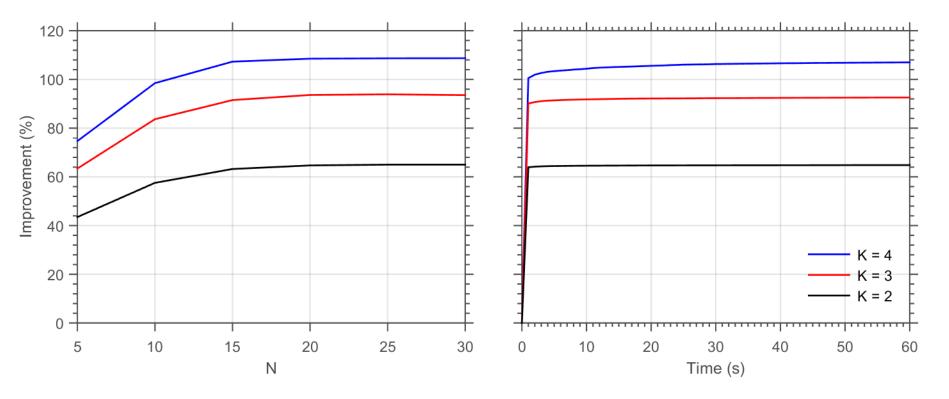
- Shortest Paths with Uncertain Costs
 - Low K suffices for maximal WC-objective gains
 - High quality solutions identified quickly



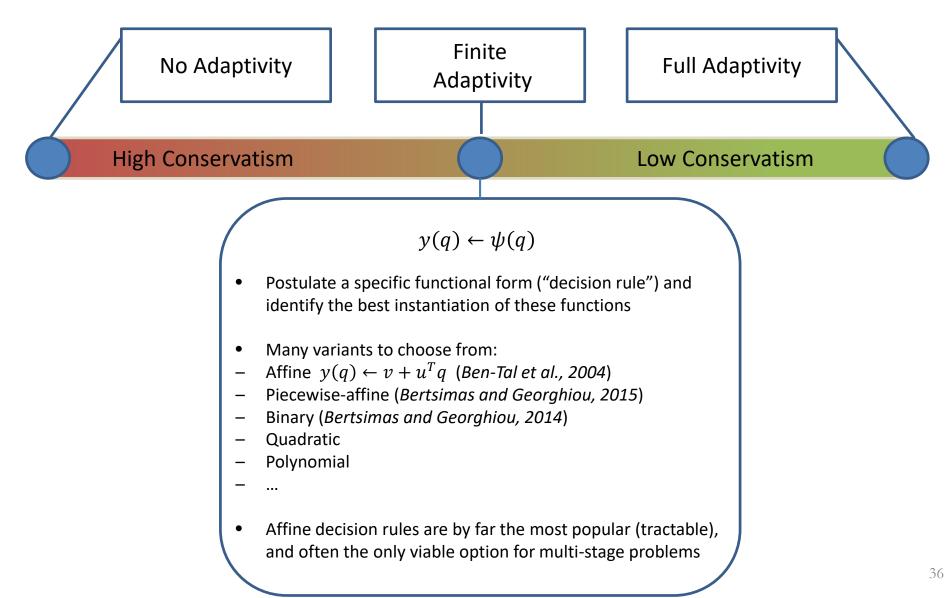


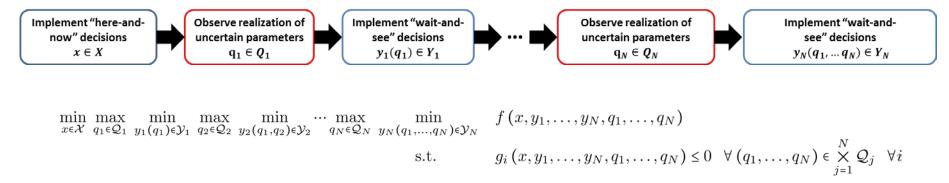
A. Subramanyam, C.E. Gounaris and W. Wiesemann (2017). K-Adaptability in Two-Stage Mixed-Integer Robust Optimization. Under Review. E₄ print available at: http://www.optimization-online.org/DB_HTML/2017/06/6093.html

- Capital Budgeting with Uncertain ROIs
 - Low K suffices for maximal WC-objective gains
 - High quality solutions identified quickly

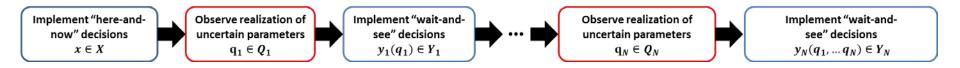


A. Subramanyam, C.E. Gounaris and W. Wiesemann (2017). K-Adaptability in Two-Stage Mixed-Integer Robust Optimization. Under Review. E₅ print available at: http://www.optimization-online.org/DB_HTML/2017/06/6093.html

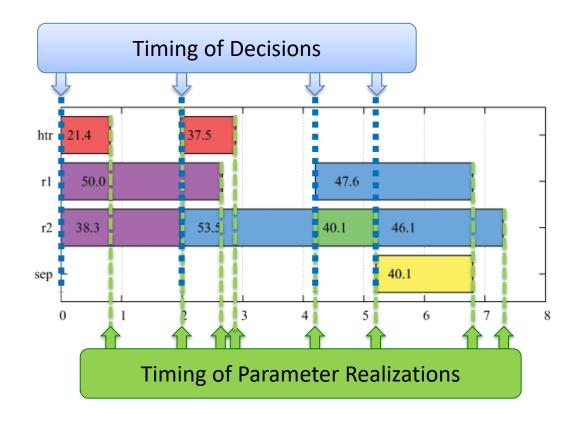


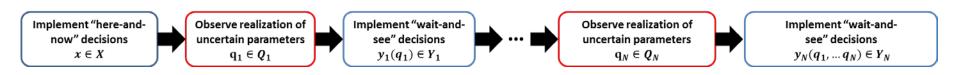


- Information gets revealed progressively
- Decisions have to be taken in between revelations
- Non-anticipativity must be obeyed
- Typical examples: Scheduling, Inventory planning, etc.

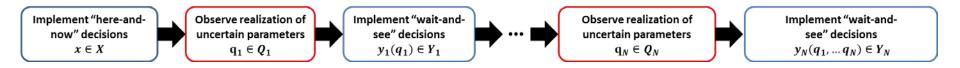


Typical examples: **Scheduling**, **Inventory planning**, etc.

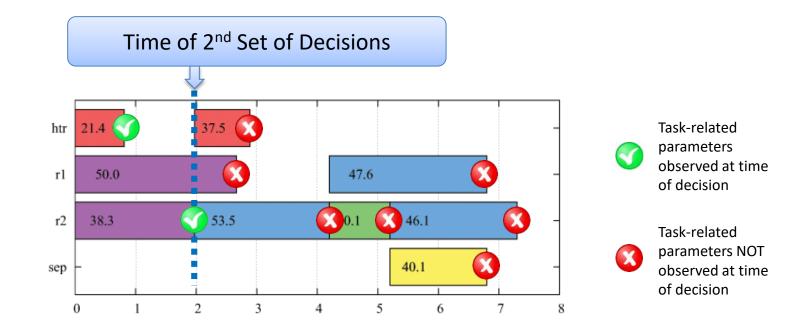


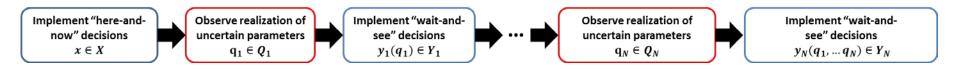


• Typical examples: Scheduling, Inventory planning, etc.

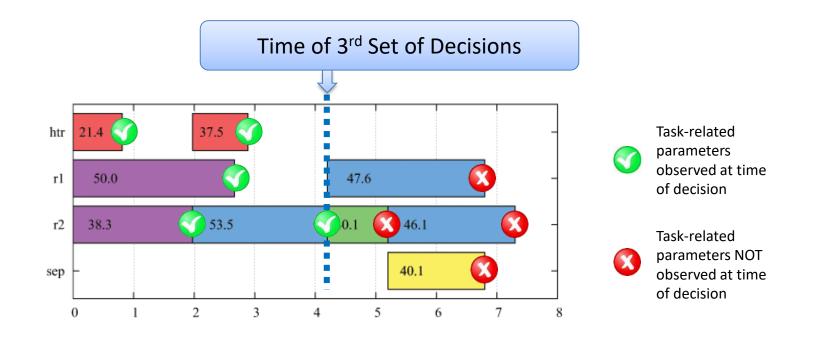


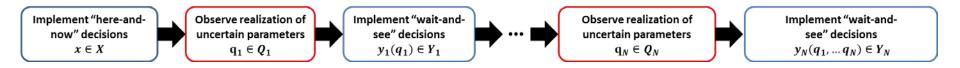
Typical examples: **Scheduling**, **Inventory planning**, etc.



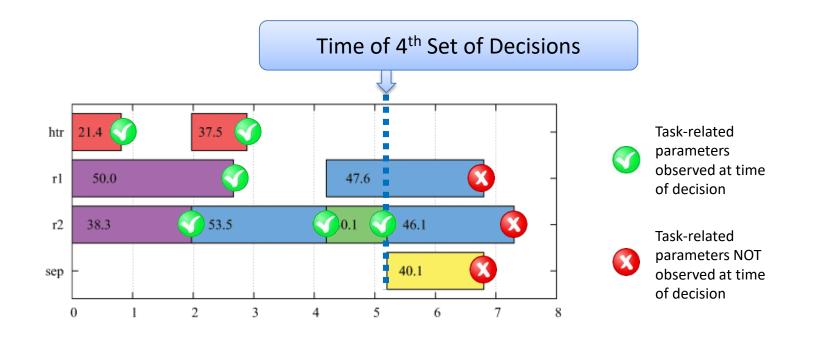


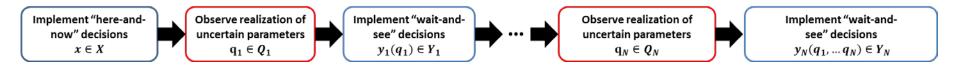
• Typical examples: **Scheduling, Inventory planning**, etc.





• Typical examples: **Scheduling, Inventory planning**, etc.





• Affine Decision Rules

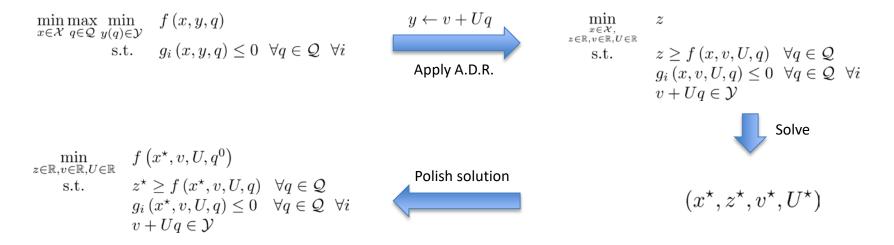
$$y_{1} \leftarrow v_{1} + u_{11}^{T} q_{1}$$

$$y_{2} \leftarrow v_{2} + u_{21}^{T} q_{1} + u_{22}^{T} q_{2}$$

$$y_{3} \leftarrow v_{3} + u_{31}^{T} q_{1} + u_{32}^{T} q_{2} + u_{33}^{T} q_{3}$$

$$\vdots$$

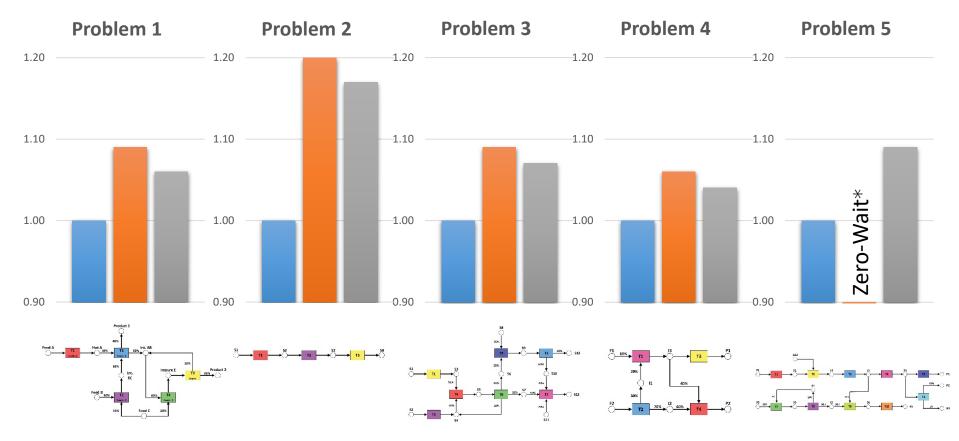
$$y_{N} \leftarrow v_{N} + u_{N1}^{T} q_{1} + u_{N2}^{T} q_{2} + u_{N3}^{T} q_{3} + \dots + u_{NN}^{T} q_{N}$$
Expect (lots of) degeneracy!



Worst-case Makespan (processing time uncertainty)

Static Robust

Adjustable Robust



N.H. Lappas and C.E. Gounaris (2016). Multi-stage Adjustable Robust Optimization for Process Scheduling Under Uncertainty. AIChE Journal, 62(5):1646-1667. Selected as Editor's Choice Paper. DOI 10.1002/aic.15183

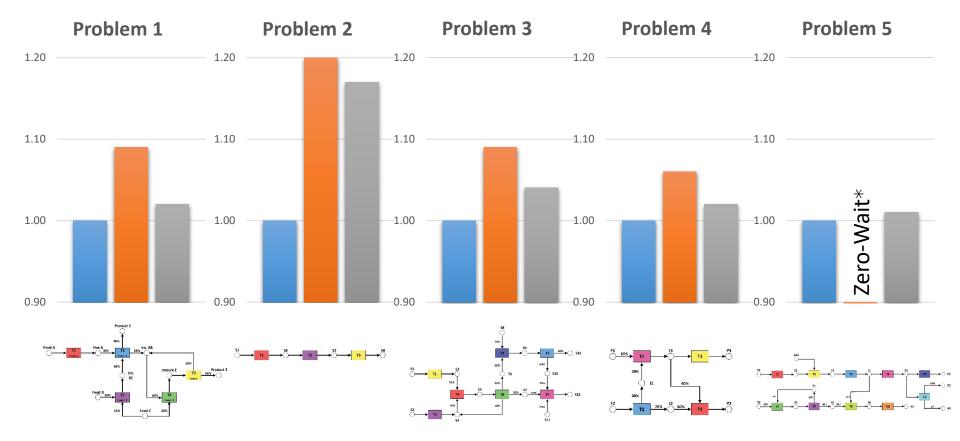
*This instance cannot be solved with the static robust approach 44

W.C. Deterministic

Expected Makespan (processing time uncertainty)

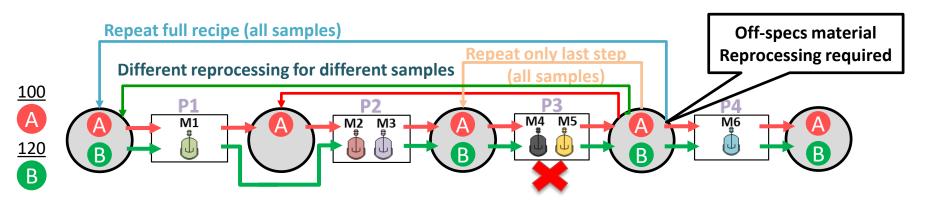
Static Robust

Adjustable Robust

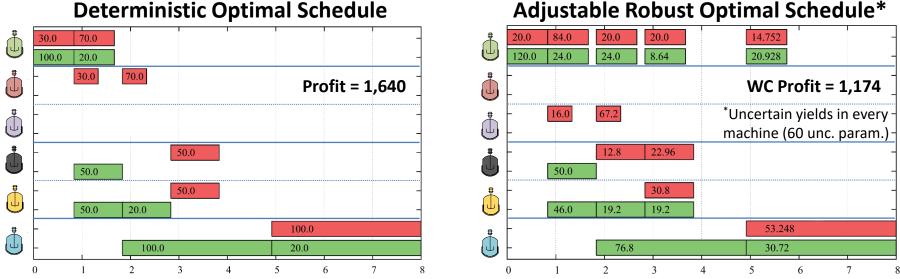


N.H. Lappas and C.E. Gounaris (2016). Multi-stage Adjustable Robust Optimization for Process Scheduling Under Uncertainty. AIChE Journal, 62(5):1646-1667. Selected as Editor's Choice Paper. DOI 10.1002/aic.15183 *This instance cannot be solved with the static robust approach 45

W.C. Deterministic



Deterministic Optimal Schedule

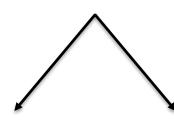


N.H. Lappas, L.A. Ricardez-Sandoval, R. Fukasawa and C.E. Gounaris (2017). Adjustable Robust Optimization for Multi-tasking Scheduling with Reprocessing of Imperfect Tasks. Under Review

Endogenous Uncertainty

Flavors of endogeneity:

Uncertain parameters can be classified as:



Exogenous:

Parameter realizations do **not depend** on decisions (e.g., weather)

Endogenous:

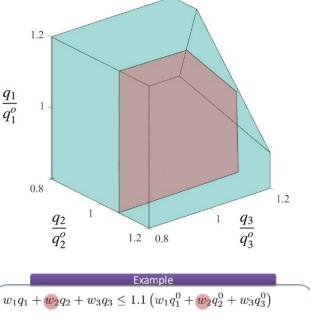
Decisions **can affect** the realizations of uncertain parameters (e.g., maintenance decisions affect failure rates)

- Materialization: Decisions may make specific parameters lose their physical meaning (e.g., production yields of non-executed processes)
- Timing of realization:

Decisions can affect the time stage at which parameters are observed (e.g., demand for a new product will be revealed after the period it is launched)

 Distributional support: Decisions can affect the underlying distributions from which a parameter realization draws (e.g., technology decisions can affect the production yields)

- Avoids unnecessarily conservative solutions that attempt to insure against risk we are not really exposed to
- Provides for a considerable degree of modeling flexibility so as to capture the endogenous nature of parameters

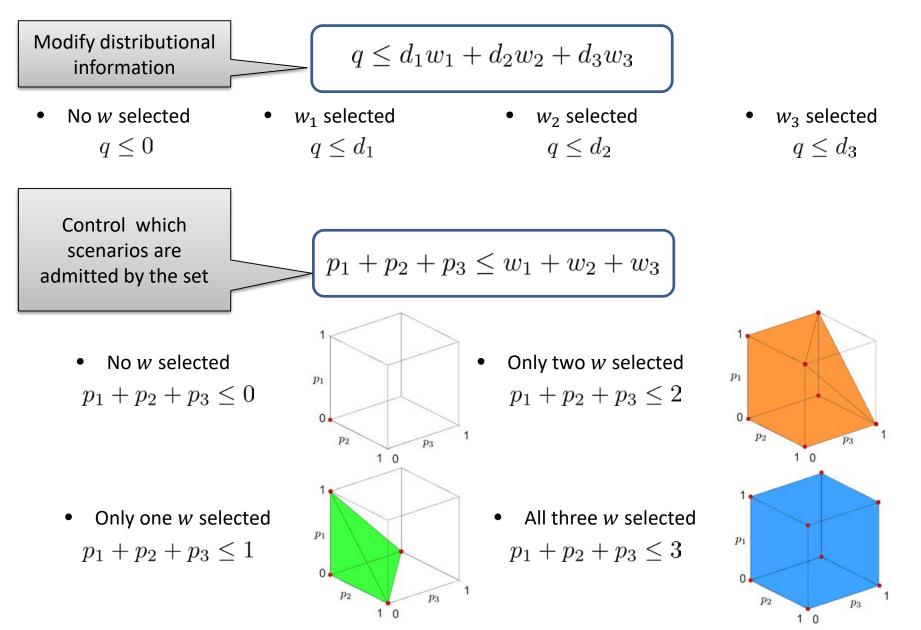


If the binary decision $w_2 = 0$ prohibits parameter q_2 from materializing, then this parameter should not participate in the facet so as not to reduce the conservatism of the solution

where: $v^{q}(w) \in \{0,1\}^{nq}$ and $v^{p}(w) \in \{0,1\}^{np}$

Modeling Capabilities

49



Modeling Capabilities

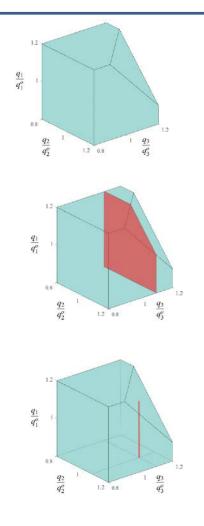
Remove the effect of non-materialized parameters

$$w_1q_1 + w_2q_2 + w_3q_3 \le (1+0.1)\left(w_1q_1^0 + w_2q_2^0 + w_3q_3^0\right)$$

• All three w_1, w_2, w_3 have been selected: $1 q_1 + 1 q_2 + 1 q_3 \le (1 + 0.1) (1 q_1^0 + 1 q_2^0 + 1 q_3^0)$

• Only w_1 , w_2 have been selected: $1 q_1 + 1 q_2 + 0 q_3 \le (1 + 0.1) (1 q_1^0 + 1 q_2^0 + 0 q_3^0)$

• Only w_1 has been selected: $1 q_1 + 0 q_2 + 0 q_3 \le (1 + 0.1) (1 q_1^0 + 0 q_2^0 + 0 q_3^0)$



Case Studies

I. Capacity Expansion

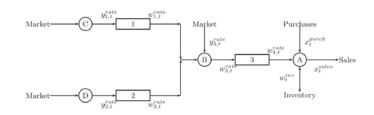
- Production yield of process i in time period t
 - Materialized, if process utilized in that period
- *Demand* for final product
 - Materialized always (exogenous)

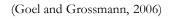
II. Offshore Oil Production

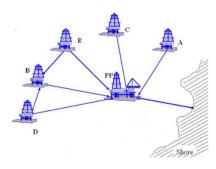
- Initial deliverability of field f
 - Materialized, if drilling occurs
 - Value depend on technology utilized
- *Reserve size* of field *f*
 - Materialized always (exogenous)

III. Clinical Trial Planning

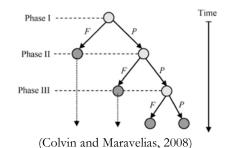
- Trial outcome of drug *i* in phase *j*
 - Materialized, if trial begins in some time period t







(Goel and Grossmann, 2004)



Benefits of Using DDUS

Normalized robust (max) objectives for 3 levels of uncertainty (low, medium, high)

Case Study	Deterministic	non-DDUS			
		L	М	Η	
Ι	100	71	65	44	
II	100	69	63	41	
III	100	57	45	36	

Benefits of Using DDUS

Normalized robust (max) objectives for 3 levels of uncertainty (low, medium, high)

Case Study	Deterministic	DDUS			non-DDUS			
		L	М	Η	L	Μ	Η	
Ι	100	90	84	79	71	65	44	
II	100	87	79	60	69	63	41	
III	100	71	65	54	57	45	36	

Opportunities = Challenges

MODERN ROBUST OPTIMIZATION CAN (in principle) ...

- Solve problems using "cutting-plane-like" approaches that progressively enforce the robustness of a solution
 - Capitalizes on deterministic optimization machinery
 - Provides more flexibility about what can be uncertain (e.g., disruptions)
 - Allows for better integration with custom-built solvers, including metaheuristics
- 2 Handle recourse (incl. mixed-integer recourse) in multi-stage decision making settings
 - Path to full adaptivity for 2-stage problems
 - Decision rules can be used (carefully) to address N-stage problems
 - Coping with equality constraints
 - Address endogenous uncertainty
 - Use of decision-dependent uncertainty sets

Group References

- 1. N.H. Lappas and C.E. Gounaris (2017). A Theoretical and Computational Comparison of Continuous-Time Process Scheduling Models for Adjustable Robust Optimization. Under Review
- 2. N.H. Lappas, L.A. Ricardez-Sandoval, R. Fukasawa and C.E. Gounaris (2017). Adjustable Robust Optimization for Multi-tasking Scheduling with Reprocessing of Imperfect Tasks. Under Review
- 3. C.E. Gounaris and D.R. Schmidt (2017). Generalized Hose Uncertainty in Single-Commodity Robust Network Design. Under Review
- 4. L.R. Matthews, C.E. Gounaris and Y.G. Kevrekidis (2017). Designing Networks with Uncertain Edge Failures Using-Two Stage Robust Optimization. Under Review
- 5. N.H. Lappas and C.E. Gounaris (2017). Robust Optimization for Decision-making under Endogenous Uncertainty. Under Review. E-print available at: http://www.optimization-online.org/DB_HTML/2017/06/6105.html
- 6. A. Subramanyam, C.E. Gounaris and W. Wiesemann (2017). K-Adaptability in Two-Stage Mixed-Integer Robust Optimization. Under Review. E-print available at: http://www.optimization-online.org/DB_HTML/2017/06/6093.html
- 7. A. Subramanyam, F. Mufalli, J. Pinto and C.E. Gounaris (2017). Robust Multi-Period Vehicle Routing Under Customer Order Uncertainty. Under Review. E-print available at: http://www.optimization-online.org/DB_HTML/2017/04/5947.html
- 8. A. Subramanyam, P.P. Repoussis and C.E. Gounaris (2017). Heuristics and Lower Bounds for Robust Heterogeneous Vehicle Routing Problems Under Demand Uncertainty. In: Proceedings of the First Triennial Conference of the INFORMS Transportation and Logistics Society, TSL-2017
- 9. C.E. Gounaris (2017). Advances in Robust Optimization and Opportunities for Process Operations. In: Proceedings of the Foundations of Computer-Aided Process Operations/Chemical Process Control (FOCAPO 2017/CPC IX), Paper ID IF110
- A. Subramanyam and C.E. Gounaris (2017). Strategic Allocation of Time Windows in Vehicle Routing Problems under Uncertainty. In: Proceedings of the Foundations of Computer-Aided Process Operations/Chemical Process Control (FOCAPO 2017/CPC IX), Paper ID F62
- 11. C.E. Gounaris, P.P. Repoussis, C.D. Tarantilis, W. Wiesemann and C.A. Floudas (2016). An Adaptive Memory Programming Framework for the Robust Capacitated Vehicle Routing Problem. Transportation Science, 50(4):1239-1260. DOI 10.1287/trsc.2014.0559
- N.H. Lappas and C.E. Gounaris (2016). Multi-stage Adjustable Robust Optimization for Process Scheduling Under Uncertainty. AIChE Journal, 62(5):1646-1667. Selected as Editor's Choice Paper. DOI 10.1002/aic.15183
- N.H. Lappas and C.E. Gounaris (2016). Comparison of Continuous-Time Models for Adjustable Robust Optimization in Process Scheduling under Uncertainty. In: 26th European Symposium on Computer Aided Process Engineering, ESCAPE-26, Z. Kravanja and M. Bogataj (Eds.), Computer Aided Chemical Engineering, Vol. 38, pp. 391-396, Elsevier. ISBN: 978-0-444-63428-3. DOI 10.1016/S1570-7946(10)28142-7

Acknowledgements

Anirudh Subramanyam

Nikolaos Lappas

Christopher Hanselman

Imperial College London

Wolfram Wiesemann

Sal Garcia

David Miller Chris Matranga et al.

Jose Pinto et al.

Panagiotis Repoussis

Daniel Schmidt

Duniversity of Pittsburgh

Ioannis Mpourmpakis Goetz Veser

Luis Ricardez-Sandoval Ricardo Fukasawa

Akang Wang

Natalie Isenberg

Logan Mathews

National Science Foundation (CMMI – 1434682) (CBET – 1510787) (CMMI – 1634594)

Department of Energy, Institute for the Design of Advanced Energy Systems (DE-AC02-05CH11231)