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Uncertainty in EWO Setting
• Uncertainty is inherent in virtually all EWO settings, both 

strategic and operational ones

• Typical sources of uncertainty:
– Market behavior

• e.g., prices, customer demands
– Unexpected events

• e.g., disruptions
– Model-system mismatch

• e.g., unknown thermodynamics and/or kinetics

• Optimization in view of only the nominal case can lead to 
suboptimal/infeasible solutions
 Need for risk-averse decision-making
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Challenges for EWO under Uncertainty
• Large combinatorial component

– Mixed-integer models with lots of discrete decisions
– Often custom-built approaches (decomposition, branch-and-cut/price, etc.)
– Discreteness also prevalent on the side of uncertain parameters

• Multi-stage horizons

– Multiple paradigms:
• Invest now, then operate every fiscal year
• Place/receive order now, then route material through the supply chain
• Decide control actions for the whole control horizon 

– Set up a DSS to work autonomously in a rolling horizon fashion
• Re-optimization round-the-clock, as often as you can afford
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• Re-optimization frequency dictated by tractability
• Number of stages dictated by need to locate “better solutions”

• Need high-quality “wait-and-see” decisions (prepare to adopt them!)
• “Closed-loop feasibility” is more likely as you account for more stages

Multi-stage Horizons (cont’d)
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Robust Optimization
• Game theory interpretation:

– Player 1 (decision-maker) tries to minimize the objective
– Player 2 (adversary nature) tries to minimize feasibility margin

• Foundations in “pessimistic optimization” (Wald, Soyster)
– Attempts to find the solution that would perform best in the “worst-case”
– The above implies that the solution must remain feasible under all cases 

we want to insure against (uncertainty set)

• Some references to start with:
– A. Ben-Tal, L. El Ghaoui and A. Nemirovski (2009). Robust Optimization. Princeton University Press
– D. Bertsimas, D.B. Brown and C. Caramanis (2011). Theory and Applications of Robust Optimization. SIAM 

Review, 53(3):464
– B.L. Gorissen, I. Yanikoglu and D. den Hertog (2015). A Practical Guide to Robust Optimization. Omega, 

53:124
– C.E. Gounaris (2017). Advances in Robust Optimization and Opportunities for Process Operations. In: 

Proceedings of FOCAPO 2017/CPC IX, Paper ID IF110
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1-Stage Robust Optimization
• a.k.a. “Static” Robust Optimization

6



Solving Robust Optimization Problems
Reformulation Approach

 Address semi-infinite formulation via 
duality-based treatment of inner problems

 Can accommodate non-standard 
settings, e.g.,
 discrete uncertain parameters
 non MathOpt-based solvers

 Requires more elaborate 
implementation (and lots of 
“tuning”)

Robust Cutting-Plane Approach1

 Given a (feasible or relaxed) solution, solve 
a separation problem to identify realizations 
from within the uncertainty set for which 
this solution violates a constraint

 Gradually enforce robustness by adding 
select deterministic constraints using 
violating realizations

1Mutapcic and Boyd, 2009

 The problem can be solved 
“monolithically,” via direct call to an 
appropriate optimization solver

 Restricted to settings where strong 
duality holds

 The size of the problem grows a lot 
(unnecessarily?) as the uncertainty 
set dimensionality grows
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Robust Optimization
• When to consider:

– When you can routinely solve the deterministic problem
– Feasibility is important

• Safety reasons
• Cannot monetize infeasibility

– Large number of parameters that only sparsely participate in constraints
– Stochastic description of uncertainty meets certain criteria

• No detailed (joint) probability distributions
• Well-motivated, strong correlations among parameters

• Size and shape of uncertainty set is chosen by the modeler
– Usually some norm-based set (e.g., interval, ellipsoid, box)
– No explicit requirement for scenarios and/or probability distributions
– If distributional information exists, uncertainty sets can be related to 

confidence intervals
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Examples of Uncertainty Sets
 Ellipsoids

– Gaussian confidence intervals

 Budget sets
– aggregate forecasts at various hierarchies

 Factor models
– bounded disturbances around nominal values

– “zero-net-alpha” models in portfolio optimization
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Examples of Uncertainty Sets
 Cardinality-constrained sets

– “Gamma” sets (Bertsimas & Sim, 2004)

 Discrete sets
– Collection of relevant scenarios
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Polyhedral Uncertainty Sets
Advantages:

• Numerically tractable, maintaining class 
of deterministic counterpart

• Derivable from historical data via 
machine learning techniques

• Can always be used as approximations of 
non-polyhedral sets
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1-Stage Robust Optimization

• Main limitation: All decisions are considered as “here-and-now” 
(irrespectively of whether the application mandates this or not)

• Consequently, we cannot enforce equalities involving uncertain 
parameters (e.g., mass balances with uncertain reaction rates)

• a.k.a. “Static” Robust Optimization
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Handling Equalities with Static RO
• SRO affords us only a single value (solution) for each decision 

variable, making it hard to satisfy an equality constraint that 
references an uncertain parameter for all its realizations

• State-variable elimination could sometimes remedy the issue
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• “Adjustable” Robust Optimization

2-Stage Robust Optimization

Implement “here-
and-now” 

decisions 𝒙𝒙 ∈ 𝜲𝜲

Observe realization 
of uncertain 

parameters 𝒒𝒒 ∈ 𝑸𝑸

Implement “wait-
and-see” decisions 

𝒚𝒚(𝒒𝒒) ∈ 𝒀𝒀

• A specific 𝑦𝑦 may be optimal for a 
scenario 𝑞𝑞, but suboptimal for a 
scenario 𝑞𝑞𝑞

• Best 𝑦𝑦(𝑞𝑞) may correspond to any 
arbitrary functional dependence 

• Ideally we would like to identify the 
best feasible 𝑦𝑦 for each possible 𝑞𝑞
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2-Stage Robust Optimization

High Conservatism Low Conservatism

No Adaptivity Full AdaptivityFinite
Adaptivity
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2-Stage Robust Optimization

High Conservatism Low Conservatism

No Adaptivity Full AdaptivityFinite
Adaptivity

• 𝑦𝑦 variables do not depend on 
the uncertainty

• A single policy must be feasible 
for any possible realization of 
uncertainty

• Equivalent to 1-stage RO

𝑦𝑦 𝑞𝑞 ← 𝑦𝑦
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2-Stage Robust Optimization

High Conservatism Low Conservatism

No Adaptivity Full AdaptivityFinite
Adaptivity

𝑦𝑦 𝑞𝑞

• Add Benders cuts to restrict 
the first-stage decisions and 
associated cost of recourse 
(Thiele, 2009)

• Progressively identify violating 
scenarios and cover them via 
new policies, which are to be 
collectively robust in the end 
(Zeng and Zhao, 2013)
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 Consider the transportation of a commodity between four locations

Supply Chain Network Design

A
𝑏𝑏 = +10

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

𝑐𝑐 = 2
𝑐𝑐 = 2𝑐𝑐 = 5

𝑐𝑐 = 1

𝑐𝑐 = 2

𝑐𝑐 = 2
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 Optimal solution is to build exactly two links

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

𝑐𝑐 = 2
𝑢𝑢 = 3

𝑐𝑐 = 1
𝑢𝑢 = 7

Total cost = 13

A
𝑏𝑏 = +10

19



 What if up to 1 transportation link fails?

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

𝑐𝑐 = 2
𝑢𝑢 = 3

𝑐𝑐 = 1
𝑢𝑢 = 7

Total cost = 13

A
𝑏𝑏 = +10
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 What if up to 1 transportation link fails?

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

Scenario 1: 
Infeasible

A
𝑏𝑏 = +10
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 What if up to 1 transportation link fails?

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

Scenario 2: 
Infeasible

A
𝑏𝑏 = +10
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 What if up to 1 transportation link fails?

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

𝑐𝑐 = 2
𝑐𝑐 = 2

𝑐𝑐 = 1

𝑐𝑐 = 2

𝑐𝑐 = 2
A

𝑏𝑏 = +10
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 What if up to 1 transportation link fails?

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

𝑐𝑐 = 2
𝑢𝑢 = 0

𝑐𝑐 = 2
𝑢𝑢 = 3

𝑐𝑐 = 1
𝑢𝑢 = 7

𝑐𝑐 = 2
𝑢𝑢 = 3

𝑐𝑐 = 2
𝑢𝑢 = 0

Scenario 1: 
Total cost = 19

A
𝑏𝑏 = +10
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 What if up to 1 transportation link fails?

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

Scenario 2: 
Total cost = 34

𝑐𝑐 = 2
𝑢𝑢 = 3

𝑐𝑐 = 2
𝑢𝑢 = 0

𝑐𝑐 = 1
𝑢𝑢 = 0

𝑐𝑐 = 2
𝑢𝑢 = 7

𝑐𝑐 = 2
𝑢𝑢 = 7A

𝑏𝑏 = +10
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 What if up to 1 transportation link fails?

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

Scenarios 3/4/5: 
Total cost = 13

𝑐𝑐 = 2
𝑢𝑢 =3

𝑐𝑐 = 2
𝑢𝑢 = 0

𝑐𝑐 = 1
𝑢𝑢 = 7

𝑐𝑐 = 2
𝑢𝑢 =0

𝑐𝑐 = 2
𝑢𝑢 = 0A

𝑏𝑏 = +10
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 Robust (up to 1 disrupted links) Network

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

Worst-case cost = 34
Expected cost = 18.4

A
𝑏𝑏 = +10
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 Robust (up to 2 disrupted links) Network

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

Worst-case cost = 55
Expected cost = 24.9

Apply C&CG to solve this problem on a larger scale!

A
𝑏𝑏 = +10

L.R. Matthews, C.E. Gounaris and Y.G. Kevrekidis (2017). Designing Networks with Uncertain Edge Failures Using Two-Stage Robust 
Optimization. Under Review 28



2-Stage Robust Optimization

High Conservatism Low Conservatism

No Adaptivity Full AdaptivityFinite
Adaptivity

𝑦𝑦 𝑞𝑞 ← �
𝑘𝑘=1

𝐾𝐾

𝑧𝑧𝑘𝑘 𝑞𝑞 𝑦𝑦𝑘𝑘

• Partition the uncertainty set into 𝐾𝐾 subsets, and assign 
each of these to a separate policy (each policy 
guarantees robustness only against the subset)

• 𝐾𝐾 impacts level of adaptivity

• Partitioning can be:
– a−priori fixed (Bertsimas and Caramanis, 2010)
– iteratively constructed (Bertsimas and Dunning, 2016; 

Postek and den Hertog, 2016)
– optimal (Hanasusanto et al., 2015; Subramanyam et al., 

2017)

(where 𝑧𝑧𝑘𝑘 SOS1)
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Optimal Finite Adaptivity
 Example with 𝐾𝐾 = 2

– Blue region = insured by policy 1, green region = insured by policy 2
– Black points = scenarios enforced, red points = new scenarios identified

Subramanyam, et al., 2017
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Optimal Finite Adaptivity
 Example with 𝐾𝐾 = 2

– Blue region = insured by policy 1, green region = insured by policy 2
– Black points = scenarios enforced, red points = new scenarios identified

Subramanyam, et al., 2017
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Optimal Finite Adaptivity
 Example with 𝐾𝐾 = 2

– Blue region = insured by policy 1, green region = insured by policy 2
– Black points = scenarios enforced, red points = new scenarios identified

Subramanyam, et al., 2017
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Optimal Finite Adaptivity
 Example with 𝐾𝐾 = 2

– Blue region = insured by policy 1, green region = insured by policy 2
– Black points = scenarios enforced, red points = new scenarios identified

Subramanyam, et al., 2017
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Optimal Finite Adaptivity
 Shortest Paths with Uncertain Costs

– Low K suffices for maximal WC-objective gains
– High quality solutions identified quickly

A. Subramanyam, C.E. Gounaris and W. Wiesemann (2017). K-Adaptability in Two-Stage Mixed-Integer Robust Optimization. Under Review. E-
print available at: http://www.optimization-online.org/DB_HTML/2017/06/6093.html
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Optimal Finite Adaptivity
 Capital Budgeting with Uncertain ROIs

– Low K suffices for maximal WC-objective gains
– High quality solutions identified quickly

A. Subramanyam, C.E. Gounaris and W. Wiesemann (2017). K-Adaptability in Two-Stage Mixed-Integer Robust Optimization. Under Review. E-
print available at: http://www.optimization-online.org/DB_HTML/2017/06/6093.html
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2-Stage Robust Optimization

High Conservatism Low Conservatism

No Adaptivity Full AdaptivityFinite
Adaptivity

𝑦𝑦 𝑞𝑞 ← 𝜓𝜓 𝑞𝑞

• Postulate a specific functional form (“decision rule”) and 
identify the best instantiation of these functions

• Many variants to choose from:
– Affine 𝑦𝑦 𝑞𝑞 ← 𝑣𝑣 + 𝑢𝑢𝑇𝑇𝑞𝑞 (Ben-Tal et al., 2004)
– Piecewise-affine (Bertsimas and Georghiou, 2015)
– Binary (Bertsimas and Georghiou, 2014)
– Quadratic
– Polynomial
– …

• Affine decision rules are by far the most popular (tractable), 
and often the only viable option for multi-stage problems
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Multi-stage Robust Optimization

• Information gets revealed progressively

• Decisions have to be taken in between revelations

• Non-anticipativity must be obeyed

• Typical examples: Scheduling, Inventory planning, etc.
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• Typical examples: Scheduling, Inventory planning, etc.

Multi-stage Robust Optimization

Timing of Parameter Realizations

Timing of Decisions
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• Typical examples: Scheduling, Inventory planning, etc.

Multi-stage Robust Optimization

Time of 1st Set of Decisions

Task-related 
parameters 
observed at time 
of decision

Task-related 
parameters NOT 
observed at time 
of decision
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• Typical examples: Scheduling, Inventory planning, etc.

Multi-stage Robust Optimization

Time of 2nd Set of Decisions

Task-related 
parameters 
observed at time 
of decision

Task-related 
parameters NOT 
observed at time 
of decision
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• Typical examples: Scheduling, Inventory planning, etc.

Multi-stage Robust Optimization

Time of 3rd Set of Decisions

Task-related 
parameters 
observed at time 
of decision

Task-related 
parameters NOT 
observed at time 
of decision
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• Typical examples: Scheduling, Inventory planning, etc.

Multi-stage Robust Optimization

Time of 4th Set of Decisions

Task-related 
parameters 
observed at time 
of decision

Task-related 
parameters NOT 
observed at time 
of decision
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• Affine Decision Rules

Multi-stage Robust Optimization

Expect (lots of) degeneracy!

Apply A.D.R.

Solve

Polish solution

43



0.90

1.00

1.10

1.20

Problem 5

Multi-stage RO Example: Process Scheduling

Worst-case Makespan (processing time uncertainty)

Ze
ro

-W
ai

t*

0.90

1.00

1.10

1.20

Problem 1

0.90

1.00

1.10

1.20

Problem 3

0.90

1.00

1.10

1.20

Problem 4

0.90

1.00

1.10

1.20

Problem 2

*This instance cannot be solved with 
the static robust approachN.H. Lappas and C.E. Gounaris (2016). Multi-stage Adjustable Robust Optimization for Process Scheduling 

Under Uncertainty. AIChE Journal, 62(5):1646-1667. Selected as Editor’s Choice Paper. DOI 10.1002/aic.15183
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Problem 5

Multi-stage RO Example: Process Scheduling
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Problem 4
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Problem 2

*This instance cannot be solved with 
the static robust approach

Expected Makespan (processing time uncertainty)

N.H. Lappas and C.E. Gounaris (2016). Multi-stage Adjustable Robust Optimization for Process Scheduling 
Under Uncertainty. AIChE Journal, 62(5):1646-1667. Selected as Editor’s Choice Paper. DOI 10.1002/aic.15183
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Multi-Tasking Scheduling with Reprocessing

A
B

A A
B

A
B

A
B

Off-specs material 
Reprocessing required

Repeat full recipe (all samples)

Deterministic Optimal Schedule

Profit = 1,640

Repeat only last step
(all samples)Different reprocessing for different samples 

N.H. Lappas, L.A. Ricardez-Sandoval, R. Fukasawa and C.E. Gounaris (2017). Adjustable Robust Optimization for Multi-tasking 
Scheduling with Reprocessing of Imperfect Tasks. Under Review

Adjustable Robust Optimal Schedule*

WC Profit = 1,174
*Uncertain yields in every 
machine (60 unc. param.)
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Endogenous Uncertainty
Flavors of endogeneity:

– Materialization: Decisions 
may make specific parameters 
lose their physical meaning 
(e.g., production yields of 
non-executed processes)

– Timing of realization:
Decisions can affect the time 
stage at which parameters are 
observed (e.g., demand for a 
new product will be revealed 
after the period it is 
launched)

– Distributional support:
Decisions can affect the 
underlying distributions from 
which a parameter realization 
draws (e.g., technology 
decisions can affect the 
production yields)

Exogenous:
Parameter realizations 

do not depend on 
decisions

(e.g., weather)

Endogenous:
Decisions can affect 
the realizations of 

uncertain parameters 
(e.g., maintenance 

decisions affect
failure rates)

Uncertain parameters 
can be classified as:
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Decision-Dependent Uncertainty Sets
• Avoids unnecessarily conservative solutions 

that attempt to insure against risk we are not 
really exposed to

• Provides for a considerable degree of 
modeling flexibility so as to capture the 
endogenous nature of parameters
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• No 𝑤𝑤 selected

• Only one 𝑤𝑤 selected

• No 𝑤𝑤 selected • 𝑤𝑤1 selected • 𝑤𝑤2 selected • 𝑤𝑤3 selected

Modify distributional 
information

Control  which 
scenarios are 

admitted by the set

Modeling Capabilities

• Only two 𝑤𝑤 selected

• All three 𝑤𝑤 selected
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• All three 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3 have been selected:

• Only 𝑤𝑤1,𝑤𝑤2 have been selected:

• Only 𝑤𝑤1 has been selected:

Remove the effect of 
non-materialized 

parameters

Modeling Capabilities
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Case Studies
I. Capacity Expansion
- Production yield of process 𝑖𝑖 in time period 𝑡𝑡

- Materialized, if process utilized in that period
- Demand for final product

- Materialized always (exogenous)

II. Offshore Oil Production
- Initial deliverability of field 𝑓𝑓

- Materialized, if drilling occurs
- Value depend on technology utilized

- Reserve size of field 𝑓𝑓
- Materialized always (exogenous)

III. Clinical Trial Planning
- Trial outcome of drug 𝑖𝑖 in phase 𝑗𝑗

- Materialized, if trial begins in some time period 𝑡𝑡

(Goel and Grossmann, 2006)

(Goel and Grossmann, 2004)

(Colvin and Maravelias, 2008) 51



Benefits of Using DDUS

Normalized robust (max) objectives for 3 levels of uncertainty (low, medium, high) 

N.H. Lappas and C.E. Gounaris (2017). Robust Optimization for Decision-making under Endogenous Uncertainty. Under Review. E-print 
available at: http://www.optimization-online.org/DB_HTML/2017/06/6105.html
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Benefits of Using DDUS

Normalized robust (max) objectives for 3 levels of uncertainty (low, medium, high) 

N.H. Lappas and C.E. Gounaris (2017). Robust Optimization for Decision-making under Endogenous Uncertainty. Under Review. E-print 
available at: http://www.optimization-online.org/DB_HTML/2017/06/6105.html
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Opportunities = Challenges
MODERN ROBUST OPTIMIZATION CAN (in principle) …
 Solve problems using ”cutting-plane-like” approaches that progressively 

enforce the robustness of a solution
– Capitalizes on deterministic optimization machinery
– Provides more flexibility about what can be uncertain (e.g., disruptions)
– Allows for better integration with custom-built solvers, including metaheuristics

1
.

 Handle recourse (incl. mixed-integer recourse) in multi-stage decision 
making settings
– Path to full adaptivity for 2-stage problems
– Decision rules can be used (carefully) to address N-stage problems
– Coping with equality constraints

2
.

 Address endogenous uncertainty
– Use of decision-dependent uncertainty sets

3
.
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