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Uncertainty in EWO Setting
• Uncertainty is inherent in virtually all EWO settings, both 

strategic and operational ones

• Typical sources of uncertainty:
– Market behavior

• e.g., prices, customer demands
– Unexpected events

• e.g., disruptions
– Model-system mismatch

• e.g., unknown thermodynamics and/or kinetics

• Optimization in view of only the nominal case can lead to 
suboptimal/infeasible solutions
 Need for risk-averse decision-making
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Challenges for EWO under Uncertainty
• Large combinatorial component

– Mixed-integer models with lots of discrete decisions
– Often custom-built approaches (decomposition, branch-and-cut/price, etc.)
– Discreteness also prevalent on the side of uncertain parameters

• Multi-stage horizons

– Multiple paradigms:
• Invest now, then operate every fiscal year
• Place/receive order now, then route material through the supply chain
• Decide control actions for the whole control horizon 

– Set up a DSS to work autonomously in a rolling horizon fashion
• Re-optimization round-the-clock, as often as you can afford
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• Re-optimization frequency dictated by tractability
• Number of stages dictated by need to locate “better solutions”

• Need high-quality “wait-and-see” decisions (prepare to adopt them!)
• “Closed-loop feasibility” is more likely as you account for more stages

Multi-stage Horizons (cont’d)
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Robust Optimization
• Game theory interpretation:

– Player 1 (decision-maker) tries to minimize the objective
– Player 2 (adversary nature) tries to minimize feasibility margin

• Foundations in “pessimistic optimization” (Wald, Soyster)
– Attempts to find the solution that would perform best in the “worst-case”
– The above implies that the solution must remain feasible under all cases 

we want to insure against (uncertainty set)

• Some references to start with:
– A. Ben-Tal, L. El Ghaoui and A. Nemirovski (2009). Robust Optimization. Princeton University Press
– D. Bertsimas, D.B. Brown and C. Caramanis (2011). Theory and Applications of Robust Optimization. SIAM 

Review, 53(3):464
– B.L. Gorissen, I. Yanikoglu and D. den Hertog (2015). A Practical Guide to Robust Optimization. Omega, 

53:124
– C.E. Gounaris (2017). Advances in Robust Optimization and Opportunities for Process Operations. In: 

Proceedings of FOCAPO 2017/CPC IX, Paper ID IF110
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1-Stage Robust Optimization
• a.k.a. “Static” Robust Optimization
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Solving Robust Optimization Problems
Reformulation Approach

 Address semi-infinite formulation via 
duality-based treatment of inner problems

 Can accommodate non-standard 
settings, e.g.,
 discrete uncertain parameters
 non MathOpt-based solvers

 Requires more elaborate 
implementation (and lots of 
“tuning”)

Robust Cutting-Plane Approach1

 Given a (feasible or relaxed) solution, solve 
a separation problem to identify realizations 
from within the uncertainty set for which 
this solution violates a constraint

 Gradually enforce robustness by adding 
select deterministic constraints using 
violating realizations

1Mutapcic and Boyd, 2009

 The problem can be solved 
“monolithically,” via direct call to an 
appropriate optimization solver

 Restricted to settings where strong 
duality holds

 The size of the problem grows a lot 
(unnecessarily?) as the uncertainty 
set dimensionality grows
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Robust Optimization
• When to consider:

– When you can routinely solve the deterministic problem
– Feasibility is important

• Safety reasons
• Cannot monetize infeasibility

– Large number of parameters that only sparsely participate in constraints
– Stochastic description of uncertainty meets certain criteria

• No detailed (joint) probability distributions
• Well-motivated, strong correlations among parameters

• Size and shape of uncertainty set is chosen by the modeler
– Usually some norm-based set (e.g., interval, ellipsoid, box)
– No explicit requirement for scenarios and/or probability distributions
– If distributional information exists, uncertainty sets can be related to 

confidence intervals
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Examples of Uncertainty Sets
 Ellipsoids

– Gaussian confidence intervals

 Budget sets
– aggregate forecasts at various hierarchies

 Factor models
– bounded disturbances around nominal values

– “zero-net-alpha” models in portfolio optimization
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Examples of Uncertainty Sets
 Cardinality-constrained sets

– “Gamma” sets (Bertsimas & Sim, 2004)

 Discrete sets
– Collection of relevant scenarios
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Polyhedral Uncertainty Sets
Advantages:

• Numerically tractable, maintaining class 
of deterministic counterpart

• Derivable from historical data via 
machine learning techniques

• Can always be used as approximations of 
non-polyhedral sets
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1-Stage Robust Optimization

• Main limitation: All decisions are considered as “here-and-now” 
(irrespectively of whether the application mandates this or not)

• Consequently, we cannot enforce equalities involving uncertain 
parameters (e.g., mass balances with uncertain reaction rates)

• a.k.a. “Static” Robust Optimization
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Handling Equalities with Static RO
• SRO affords us only a single value (solution) for each decision 

variable, making it hard to satisfy an equality constraint that 
references an uncertain parameter for all its realizations

• State-variable elimination could sometimes remedy the issue
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• “Adjustable” Robust Optimization

2-Stage Robust Optimization

Implement “here-
and-now” 

decisions 𝒙𝒙 ∈ 𝜲𝜲

Observe realization 
of uncertain 

parameters 𝒒𝒒 ∈ 𝑸𝑸

Implement “wait-
and-see” decisions 

𝒚𝒚(𝒒𝒒) ∈ 𝒀𝒀

• A specific 𝑦𝑦 may be optimal for a 
scenario 𝑞𝑞, but suboptimal for a 
scenario 𝑞𝑞𝑞

• Best 𝑦𝑦(𝑞𝑞) may correspond to any 
arbitrary functional dependence 

• Ideally we would like to identify the 
best feasible 𝑦𝑦 for each possible 𝑞𝑞
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2-Stage Robust Optimization

High Conservatism Low Conservatism

No Adaptivity Full AdaptivityFinite
Adaptivity
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2-Stage Robust Optimization

High Conservatism Low Conservatism

No Adaptivity Full AdaptivityFinite
Adaptivity

• 𝑦𝑦 variables do not depend on 
the uncertainty

• A single policy must be feasible 
for any possible realization of 
uncertainty

• Equivalent to 1-stage RO

𝑦𝑦 𝑞𝑞 ← 𝑦𝑦
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2-Stage Robust Optimization

High Conservatism Low Conservatism

No Adaptivity Full AdaptivityFinite
Adaptivity

𝑦𝑦 𝑞𝑞

• Add Benders cuts to restrict 
the first-stage decisions and 
associated cost of recourse 
(Thiele, 2009)

• Progressively identify violating 
scenarios and cover them via 
new policies, which are to be 
collectively robust in the end 
(Zeng and Zhao, 2013)
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 Consider the transportation of a commodity between four locations

Supply Chain Network Design

A
𝑏𝑏 = +10

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

𝑐𝑐 = 2
𝑐𝑐 = 2𝑐𝑐 = 5

𝑐𝑐 = 1

𝑐𝑐 = 2

𝑐𝑐 = 2
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 Optimal solution is to build exactly two links

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

𝑐𝑐 = 2
𝑢𝑢 = 3

𝑐𝑐 = 1
𝑢𝑢 = 7

Total cost = 13

A
𝑏𝑏 = +10
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 What if up to 1 transportation link fails?

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

𝑐𝑐 = 2
𝑢𝑢 = 3

𝑐𝑐 = 1
𝑢𝑢 = 7

Total cost = 13

A
𝑏𝑏 = +10
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 What if up to 1 transportation link fails?

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

Scenario 1: 
Infeasible

A
𝑏𝑏 = +10
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 What if up to 1 transportation link fails?

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

Scenario 2: 
Infeasible

A
𝑏𝑏 = +10
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 What if up to 1 transportation link fails?

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

𝑐𝑐 = 2
𝑐𝑐 = 2

𝑐𝑐 = 1

𝑐𝑐 = 2

𝑐𝑐 = 2
A

𝑏𝑏 = +10
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 What if up to 1 transportation link fails?

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

𝑐𝑐 = 2
𝑢𝑢 = 0

𝑐𝑐 = 2
𝑢𝑢 = 3

𝑐𝑐 = 1
𝑢𝑢 = 7

𝑐𝑐 = 2
𝑢𝑢 = 3

𝑐𝑐 = 2
𝑢𝑢 = 0

Scenario 1: 
Total cost = 19

A
𝑏𝑏 = +10
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 What if up to 1 transportation link fails?

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

Scenario 2: 
Total cost = 34

𝑐𝑐 = 2
𝑢𝑢 = 3

𝑐𝑐 = 2
𝑢𝑢 = 0

𝑐𝑐 = 1
𝑢𝑢 = 0

𝑐𝑐 = 2
𝑢𝑢 = 7

𝑐𝑐 = 2
𝑢𝑢 = 7A

𝑏𝑏 = +10
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 What if up to 1 transportation link fails?

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

Scenarios 3/4/5: 
Total cost = 13

𝑐𝑐 = 2
𝑢𝑢 =3

𝑐𝑐 = 2
𝑢𝑢 = 0

𝑐𝑐 = 1
𝑢𝑢 = 7

𝑐𝑐 = 2
𝑢𝑢 =0

𝑐𝑐 = 2
𝑢𝑢 = 0A

𝑏𝑏 = +10
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 Robust (up to 1 disrupted links) Network

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

Worst-case cost = 34
Expected cost = 18.4

A
𝑏𝑏 = +10
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 Robust (up to 2 disrupted links) Network

Supply Chain Network Design

C
𝑏𝑏 = −3

D
𝑏𝑏 = −7 B

𝑏𝑏 = 0

Worst-case cost = 55
Expected cost = 24.9

Apply C&CG to solve this problem on a larger scale!

A
𝑏𝑏 = +10

L.R. Matthews, C.E. Gounaris and Y.G. Kevrekidis (2017). Designing Networks with Uncertain Edge Failures Using Two-Stage Robust 
Optimization. Under Review 28



2-Stage Robust Optimization

High Conservatism Low Conservatism

No Adaptivity Full AdaptivityFinite
Adaptivity

𝑦𝑦 𝑞𝑞 ← �
𝑘𝑘=1

𝐾𝐾

𝑧𝑧𝑘𝑘 𝑞𝑞 𝑦𝑦𝑘𝑘

• Partition the uncertainty set into 𝐾𝐾 subsets, and assign 
each of these to a separate policy (each policy 
guarantees robustness only against the subset)

• 𝐾𝐾 impacts level of adaptivity

• Partitioning can be:
– a−priori fixed (Bertsimas and Caramanis, 2010)
– iteratively constructed (Bertsimas and Dunning, 2016; 

Postek and den Hertog, 2016)
– optimal (Hanasusanto et al., 2015; Subramanyam et al., 

2017)

(where 𝑧𝑧𝑘𝑘 SOS1)
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Optimal Finite Adaptivity
 Example with 𝐾𝐾 = 2

– Blue region = insured by policy 1, green region = insured by policy 2
– Black points = scenarios enforced, red points = new scenarios identified

Subramanyam, et al., 2017
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Optimal Finite Adaptivity
 Example with 𝐾𝐾 = 2

– Blue region = insured by policy 1, green region = insured by policy 2
– Black points = scenarios enforced, red points = new scenarios identified

Subramanyam, et al., 2017
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Optimal Finite Adaptivity
 Example with 𝐾𝐾 = 2

– Blue region = insured by policy 1, green region = insured by policy 2
– Black points = scenarios enforced, red points = new scenarios identified

Subramanyam, et al., 2017
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Optimal Finite Adaptivity
 Example with 𝐾𝐾 = 2

– Blue region = insured by policy 1, green region = insured by policy 2
– Black points = scenarios enforced, red points = new scenarios identified

Subramanyam, et al., 2017
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Optimal Finite Adaptivity
 Shortest Paths with Uncertain Costs

– Low K suffices for maximal WC-objective gains
– High quality solutions identified quickly

A. Subramanyam, C.E. Gounaris and W. Wiesemann (2017). K-Adaptability in Two-Stage Mixed-Integer Robust Optimization. Under Review. E-
print available at: http://www.optimization-online.org/DB_HTML/2017/06/6093.html

34



Optimal Finite Adaptivity
 Capital Budgeting with Uncertain ROIs

– Low K suffices for maximal WC-objective gains
– High quality solutions identified quickly

A. Subramanyam, C.E. Gounaris and W. Wiesemann (2017). K-Adaptability in Two-Stage Mixed-Integer Robust Optimization. Under Review. E-
print available at: http://www.optimization-online.org/DB_HTML/2017/06/6093.html
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2-Stage Robust Optimization

High Conservatism Low Conservatism

No Adaptivity Full AdaptivityFinite
Adaptivity

𝑦𝑦 𝑞𝑞 ← 𝜓𝜓 𝑞𝑞

• Postulate a specific functional form (“decision rule”) and 
identify the best instantiation of these functions

• Many variants to choose from:
– Affine 𝑦𝑦 𝑞𝑞 ← 𝑣𝑣 + 𝑢𝑢𝑇𝑇𝑞𝑞 (Ben-Tal et al., 2004)
– Piecewise-affine (Bertsimas and Georghiou, 2015)
– Binary (Bertsimas and Georghiou, 2014)
– Quadratic
– Polynomial
– …

• Affine decision rules are by far the most popular (tractable), 
and often the only viable option for multi-stage problems
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Multi-stage Robust Optimization

• Information gets revealed progressively

• Decisions have to be taken in between revelations

• Non-anticipativity must be obeyed

• Typical examples: Scheduling, Inventory planning, etc.
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• Typical examples: Scheduling, Inventory planning, etc.

Multi-stage Robust Optimization

Timing of Parameter Realizations

Timing of Decisions
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• Typical examples: Scheduling, Inventory planning, etc.

Multi-stage Robust Optimization

Time of 1st Set of Decisions

Task-related 
parameters 
observed at time 
of decision

Task-related 
parameters NOT 
observed at time 
of decision
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• Typical examples: Scheduling, Inventory planning, etc.

Multi-stage Robust Optimization

Time of 2nd Set of Decisions

Task-related 
parameters 
observed at time 
of decision

Task-related 
parameters NOT 
observed at time 
of decision
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• Typical examples: Scheduling, Inventory planning, etc.

Multi-stage Robust Optimization

Time of 3rd Set of Decisions

Task-related 
parameters 
observed at time 
of decision

Task-related 
parameters NOT 
observed at time 
of decision
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• Typical examples: Scheduling, Inventory planning, etc.

Multi-stage Robust Optimization

Time of 4th Set of Decisions

Task-related 
parameters 
observed at time 
of decision

Task-related 
parameters NOT 
observed at time 
of decision
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• Affine Decision Rules

Multi-stage Robust Optimization

Expect (lots of) degeneracy!

Apply A.D.R.

Solve

Polish solution
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1.10

1.20

Problem 5

Multi-stage RO Example: Process Scheduling

Worst-case Makespan (processing time uncertainty)

Ze
ro

-W
ai

t*

0.90

1.00

1.10

1.20

Problem 1
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1.00

1.10

1.20

Problem 3

0.90

1.00

1.10

1.20

Problem 4

0.90

1.00

1.10

1.20

Problem 2

*This instance cannot be solved with 
the static robust approachN.H. Lappas and C.E. Gounaris (2016). Multi-stage Adjustable Robust Optimization for Process Scheduling 

Under Uncertainty. AIChE Journal, 62(5):1646-1667. Selected as Editor’s Choice Paper. DOI 10.1002/aic.15183
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Multi-stage RO Example: Process Scheduling
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*This instance cannot be solved with 
the static robust approach

Expected Makespan (processing time uncertainty)

N.H. Lappas and C.E. Gounaris (2016). Multi-stage Adjustable Robust Optimization for Process Scheduling 
Under Uncertainty. AIChE Journal, 62(5):1646-1667. Selected as Editor’s Choice Paper. DOI 10.1002/aic.15183
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Multi-Tasking Scheduling with Reprocessing

A
B

A A
B

A
B

A
B

Off-specs material 
Reprocessing required

Repeat full recipe (all samples)

Deterministic Optimal Schedule

Profit = 1,640

Repeat only last step
(all samples)Different reprocessing for different samples 

N.H. Lappas, L.A. Ricardez-Sandoval, R. Fukasawa and C.E. Gounaris (2017). Adjustable Robust Optimization for Multi-tasking 
Scheduling with Reprocessing of Imperfect Tasks. Under Review

Adjustable Robust Optimal Schedule*

WC Profit = 1,174
*Uncertain yields in every 
machine (60 unc. param.)
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Endogenous Uncertainty
Flavors of endogeneity:

– Materialization: Decisions 
may make specific parameters 
lose their physical meaning 
(e.g., production yields of 
non-executed processes)

– Timing of realization:
Decisions can affect the time 
stage at which parameters are 
observed (e.g., demand for a 
new product will be revealed 
after the period it is 
launched)

– Distributional support:
Decisions can affect the 
underlying distributions from 
which a parameter realization 
draws (e.g., technology 
decisions can affect the 
production yields)

Exogenous:
Parameter realizations 

do not depend on 
decisions

(e.g., weather)

Endogenous:
Decisions can affect 
the realizations of 

uncertain parameters 
(e.g., maintenance 

decisions affect
failure rates)

Uncertain parameters 
can be classified as:
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Decision-Dependent Uncertainty Sets
• Avoids unnecessarily conservative solutions 

that attempt to insure against risk we are not 
really exposed to

• Provides for a considerable degree of 
modeling flexibility so as to capture the 
endogenous nature of parameters
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• No 𝑤𝑤 selected

• Only one 𝑤𝑤 selected

• No 𝑤𝑤 selected • 𝑤𝑤1 selected • 𝑤𝑤2 selected • 𝑤𝑤3 selected

Modify distributional 
information

Control  which 
scenarios are 

admitted by the set

Modeling Capabilities

• Only two 𝑤𝑤 selected

• All three 𝑤𝑤 selected
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• All three 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3 have been selected:

• Only 𝑤𝑤1,𝑤𝑤2 have been selected:

• Only 𝑤𝑤1 has been selected:

Remove the effect of 
non-materialized 

parameters

Modeling Capabilities
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Case Studies
I. Capacity Expansion
- Production yield of process 𝑖𝑖 in time period 𝑡𝑡

- Materialized, if process utilized in that period
- Demand for final product

- Materialized always (exogenous)

II. Offshore Oil Production
- Initial deliverability of field 𝑓𝑓

- Materialized, if drilling occurs
- Value depend on technology utilized

- Reserve size of field 𝑓𝑓
- Materialized always (exogenous)

III. Clinical Trial Planning
- Trial outcome of drug 𝑖𝑖 in phase 𝑗𝑗

- Materialized, if trial begins in some time period 𝑡𝑡

(Goel and Grossmann, 2006)

(Goel and Grossmann, 2004)

(Colvin and Maravelias, 2008) 51



Benefits of Using DDUS

Normalized robust (max) objectives for 3 levels of uncertainty (low, medium, high) 

N.H. Lappas and C.E. Gounaris (2017). Robust Optimization for Decision-making under Endogenous Uncertainty. Under Review. E-print 
available at: http://www.optimization-online.org/DB_HTML/2017/06/6105.html
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Benefits of Using DDUS

Normalized robust (max) objectives for 3 levels of uncertainty (low, medium, high) 

N.H. Lappas and C.E. Gounaris (2017). Robust Optimization for Decision-making under Endogenous Uncertainty. Under Review. E-print 
available at: http://www.optimization-online.org/DB_HTML/2017/06/6105.html
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Opportunities = Challenges
MODERN ROBUST OPTIMIZATION CAN (in principle) …
 Solve problems using ”cutting-plane-like” approaches that progressively 

enforce the robustness of a solution
– Capitalizes on deterministic optimization machinery
– Provides more flexibility about what can be uncertain (e.g., disruptions)
– Allows for better integration with custom-built solvers, including metaheuristics

1
.

 Handle recourse (incl. mixed-integer recourse) in multi-stage decision 
making settings
– Path to full adaptivity for 2-stage problems
– Decision rules can be used (carefully) to address N-stage problems
– Coping with equality constraints

2
.

 Address endogenous uncertainty
– Use of decision-dependent uncertainty sets

3
.
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