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Revenue management

Earning vs. learning

» You want to maximize 

revenues, but you do not 

know how demand 

responds to price.

You earn the most with 

prices near the middle, but 

you do not learn anything.

You learn the most by sampling 

endpoints, but then you do not 

earn anything.



Learning problems

Health sciences

» Sequential design of 

experiments for drug discovery

» Drug delivery – Optimizing the 

design of protective 

membranes to control drug 

release

» Medical decision making –

Optimal learning for medical 

treatments.



Drug discovery

Designing molecules

» X and Y are sites where we can hang substituents to change the 

behavior of the molecule.  We approximate the performance using 

a linear belief model:
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» How to sequence experiments to 

learn the best molecule as quickly 

as possible?
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Ride sharing

Uber/Lyft

» Provides real-time, on-demand 

transportation.

» Drivers are encouraged to enter or leave 

the system using pricing signals and 

informational guidance.

Decisions:

» How to price to get the right balance of 

drivers relative to customers.

» Real-time management of drivers.

» Policies (rules for managing drivers, 

customers, …)



Matching buyers with sellers

Now we have a logistic curve for 

each origin-destination pair (i,j)

Number of offers for each (i,j) pair 

is relatively small.

Need to generalize the learning 

across hundreds to thousands of 

markets.
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Emergency storm response

Hurricane Sandy

» Once in 100 years?

» Rare convergence of events

» But, meteorologists did an 

amazing job of forecasting 

the storm.

The power grid

» Loss of power creates 

cascading failures (lack of 

fuel, inability to pump water)

» How to plan?

» How to react?



Meeting variability with portfolios of generation

with mixtures of dispatchability



Storage applications

How much energy to store in a battery to handle the 

volatility of wind and spot prices to meet demands?



Modeling

Before we can solve complex problems, we have 

to know how to think about them.

The biggest challenge when making decisions 

under uncertainty is modeling.  

Min E {cx}
Ax = b

x > 0

Mathematician

Software

Organize class

libraries, and set up

communications and 

databases



Modeling

For deterministic problems, we speak the language 

of mathematical programming

» Linear programming:

» For time-staged problems
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Arguably Dantzig’s biggest 

contribution, more so than the 

simplex algorithm, was his 

articulation of optimization 

problems in a standard format, 

which has given algorithmic 

researchers a common 

language.
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Modeling dynamic systems

All sequential decision problems can be modeled 

using five core components:

» State variables
• What do we need to know at time t?

» Decision variables
• What are our decisions?

» Exogenous information
• What do we learn for the first time between t and t+1?

» Transition function
• How do the state variables evolve over time?.

» Objective function
• What are our performance metrics?



Modeling dynamic problems

The state variable:
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Operations research/MDP/Computer science
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The state variable

My definition of a state variable:

» The first depends on a policy.  The second depends 

only on the problem (and includes the constraints).

» Using either definition, all properly modeled problems 

are Markovian!



Modeling dynamic problems

Decisions:

Markov decision processes/Computer science

     Discrete action

Control theory

     Low-dimensional continuous vector

Operations research

     Usually a discrete or continuous but high-dimensional
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Instead, we define the function ( ) (or ( ) or ( )),  

where  specifies the type of policy. " " carries information

about the type of functi

how

X s A s U s  

 
.on , and any tunable parameters ff  



The decision variables

Styles of decisions

» Binary

» Finite

» Continuous scalar

» Continuous vector

» Discrete vector

» Categorical

 0,1x X 

 1,2,...,x X M 

 ,x X a b 

1( ,..., ),    K kx x x x R

1( ,..., ),    K kx x x x Z

1( ,..., ),     is a category (e.g. red/green/blue)I ix a a a



Modeling dynamic problems

Exogenous information:
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 
New information that first became known at time 

ˆ ˆ ˆˆ     = , , ,

ˆ    Equipment failures, delays, new arrivals

            New drivers being hired to the network

ˆ    New customer demands
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Note: Any variable indexed by t is known at time t. This convention, 

which is not standard in control theory, dramatically simplifies the 

modeling of information.
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Modeling dynamic problems

The transition function
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Also known as the:

“System model”

“State transition model”

“Plant model”

“Plant equation”

“Transition law”

“State equation”

“Transfer function”

“Transformation function”

“Law of motion”

“Model”

For many applications, these equations are unknown. This 

is known as “model-free” dynamic programming. 



Objective functions

» Cumulative reward (“online learning”)

• Policies have to work well over time.

» Final reward (“offline learning”)

• We only care about how well the final decision 𝑥𝜋,𝑁 works.

» Risk
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The complete model:

» Objective function

• Cumulative reward (“online learning”)

• Final reward (“offline learning”)

• Risk:

» Transition function:

» Exogenous information:
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The modeling process

Modeling real applications

» I conduct a conversation with a domain expert to fill in 

the elements of a problem:

State

variables

Decision

variables

New

information

Transition

function

Objective

function

What we need to know

(and only what we need)

What we control

What we didn’t know

when we made our decision

How the state variables evolve

Performance metrics
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Modeling uncertainty

Classes of uncertainty

» Observational uncertainty

» Prognostic uncertainty (forecasting)

» Experimental noise/variability

» Transitional uncertainty

» Inferential uncertainty

» Model uncertainty

» Systematic exogenous uncertainty

» Control/implementation uncertainty

» Algorithmic noise

» Goal uncertainty

Modeling uncertainty in the context of stochastic optimization is a 

relatively untapped area of research. 
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Designing policies

We have to start by describing what we mean by a 

policy.

» Definition:

A policy is a mapping from a state to an action.  

… any mapping.

How do we search over an arbitrary space of 

policies?



Designing policies

“Policies” and the English language

Behavior Habit Procedure

Belief Laws/bylaws Process

Bias Manner Protocols

Commandment Method Recipe

Conduct Mode Ritual

Convention Mores Rule

Culture Patterns Style

Customs Plans Technique

Dogma Policies Tenet

Etiquette Practice Tradition

Fashion Prejudice Way of life

Formula Principle



Designing policies

Two fundamental strategies for finding policies:

1) Policy search – Search over a class of functions for 

making decisions to optimize some metric.

2) Lookahead approximations – Approximate the impact 

of a decision now on the future. 
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Designing policies

Policy search:

1a) Policy function approximations (PFAs)
• Lookup tables 

– “when in this state, take this action”

• Parametric functions

– Order-up-to policies: if inventory is less than s, order up to S.

– Affine policies -

– Neural networks

• Locally/semi/non parametric

– Requires optimizing over local regions

1b) Cost function approximations (CFAs)
• Optimizing a deterministic model modified to handle uncertainty 

(buffer stocks, schedule slack)
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Designing policies

Lookahead approximations – Approximate the impact of a 

decision now on the future:

2a) Approximating the value of being in a state (VFA):

2b) Direct lookahead (DLA)

Optimal policy:

Approximate policy – solve an approximate lookahead model:
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1) Policy function approximations (PFAs)

» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)

»

3) Policies based on value function approximations (VFAs)

»

4) Direct lookahead policies (DLAs)

» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies
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1) Policy function approximations (PFAs)

» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)

»

3) Policies based on value function approximations (VFAs)

»

4) Direct lookahead policies (DLAs)

» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies

( )
( | ) arg max ( , | )

t t

CFA

t t tx
X S C S x




 




X

,

' '
,...,

' 1

( ) arg max ( , ) ( , )




 

  
tt t t H

T
LA D

t t tt tt tt tt
x x

t t

X S C S x C S x

  ( ) arg max ( , ) ( , )
t

VFA x x

t t x t t t t t tX S C S x V S S x 

' '

' 1

( ) arg max ( , ) ( ) ( ( ), ( ))
t

T
LA S

t t tt tt tt tt

t t

X S C S x p C S x


  

 

   
x
tt
,x
t ,t+1

,...,x
t ,t+T

,

' '
( ),...,

' 1

( ) arg max min ( , ) ( ( ), ( ))
ttt t t H

T
LA RO

t t tt tt tt tt
w Wx x

t t

X S C S x C S w x w





 

  

[ ( )] 1t tP A x f W   

F
u
n
ct

io
n
 a

p
p
ro

x
.



1) Policy function approximations (PFAs)

» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)

»

3) Policies based on value function approximations (VFAs)

»

4) Direct lookahead policies (DLAs)

» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies
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Learning problems

Classes of learning problems in stochastic 

optimization

1) Approximating the objective

 𝐹(𝑥|𝜃) ≈ 𝔼𝐹(𝑥,𝑊).

2) Designing a policy 𝑋𝜋 𝑆 𝜃 .

3) A value function approximation 

 𝑉𝑡(𝑆𝑡|𝜃) ≈ 𝑉𝑡(𝑆𝑡).

4) Designing a cost function approximation:
• The objective function  𝐶𝜋 𝑆𝑡 , 𝑥𝑡|𝜃 .

• The constraints 𝑋𝜋(𝑆𝑡|𝜃)

5) Approximating the transition function

 𝑆𝑀(𝑆𝑡 , 𝑥𝑡 ,𝑊𝑡+1|𝜃) ≈ 𝑆𝑀(𝑆𝑡 , 𝑥𝑡 ,𝑊𝑡+1)



Approximation strategies

Approximation strategies
» Lookup tables

• Independent beliefs 

• Correlated beliefs 

» Linear parametric models
• Linear models 

• Sparse-linear

• Tree regression

» Nonlinear parametric models
• Logistic regression

• Neural networks 

» Nonparametric models
• Gaussian process regression

• Kernel regression

• Support vector machines

• Deep neural networks 



Learning challenges

The learning challenge

From big (batch) data… … to recursive learning



Learning challenges

Variable-dimensional learning
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Outline

The four classes of policies

» Policy function approximations (PFAs)

» Cost function approximations (CFAs)

» Value function approximations (VFAs)

» Direct lookahead policies (DLAs)

» A hybrid lookahead/CFA



Outline

The four classes of policies

» Policy function approximations (PFAs)

» Cost function approximations (CFAs)

» Value function approximations (VFAs)

» Direct lookahead policies (DLAs)

» A hybrid lookahead/CFA



Policy function approximations

Battery arbitrage – When to charge, when to 

discharge, given volatile LMPs
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Grid operators require that batteries bid charge and 

discharge prices, an hour in advance.

We have to search for the best values for the policy 

parameters 
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Policy function approximations

Our policy function might be the parametric 

model (this is nonlinear in the parameters):
charge

charge discharge

charge

1 if 

( | ) 0 if 

1 if 
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Energy in storage:

Price of electricity:



Policy function approximations

Finding the best policy

» We need to maximize

» We cannot compute the expectation, so we run simulations:

DischargeCharge

 
0

max ( ) , ( | )
T

t

t t t

t

F C S X S

   


 E



Outline

The four classes of policies

» Policy function approximations (PFAs)

» Cost function approximations (CFAs)

» Value function approximations (VFAs)

» Direct lookahead policies (DLAs)

» A hybrid lookahead/CFA



Cost function approximations

Lookup table

» We can organize potential catalysts into groups

» Scientists using domain knowledge can estimate 

correlations in experiments between similar catalysts.
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Cost function approximations

Correlated beliefs: Testing one material teaches us about other 

materials

1 2 3 4 4 5



Cost function approximations

Cost function approximations (CFA)

» Upper confidence bounding

» Interval estimation

» Boltzmann exploration (“soft max”)
• Choose x with probability:

log
( | ) arg max  

 
   

 

UCB n UCB n UCB

x x n

x

n
X S

N

 ( | ) arg maxIE n IE n IE n

x x xX S     

0

n

xz

'

'

( )



 



n
x

n
x

n

x

x

e
P

e



53

Cost function approximations

Picking 𝜃𝐼𝐸 = 0 means we are evaluating each choice 

at the mean. 

1 2 3 4 4 5
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Cost function approximations

Picking 𝜃𝐼𝐸 = 2 means we are evaluating each choice 

at the 95th percentile. 

1 2 3 4 4 5



Cost function approximations

Optimizing the policy

» We optimize 𝜃𝐼𝐸 to maximize:

where

Notes:

» This can handle any belief model, 

including correlated beliefs, nonlinear 

belief models.

» All we require is that we be able to 

simulate a policy.  
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Cost function approximations

Other applications

» Airlines optimizing schedules with schedule slack to 

handle weather uncertainty.

» Manufacturers using buffer stocks to hedge against 

production delays and quality problems.

» Grid operators scheduling extra generation capacity in 

case of outages.

» Adding time to a trip planned by Google maps to 

account for uncertain congestion.



Outline

The four classes of policies

» Policy function approximations (PFAs)

» Cost function approximations (CFAs)

» Value function approximations (VFAs)

» Direct lookahead policies (DLAs)

» A hybrid lookahead/CFA



Value function approximations

Q-learning (for discrete actions)

» But what if the action a is a vector?
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Blood management

Managing blood inventories



Blood management

Managing blood inventories over time
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Updating the value function approximation

Estimate the gradient at 
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Updating the value function approximation

Update the value function at 
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Updating the value function approximation
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Updating the value function approximation

Update the value function at ,
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Exploiting concavity

Derivatives are used to estimate a piecewise linear 
approximation

( )t tV R
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Iterative learning
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Iterative learning



Iterative learning



Iterative learning
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Outline

The four classes of policies

» Policy function approximations (PFAs)

» Cost function approximations (CFAs)

» Value function approximations (VFAs)

» Direct lookahead policies (DLAs)

» A hybrid lookahead/CFA



Lookahead policies

Planning your next chess move:

» You put your finger on the piece while you think about 

moves into the future.  This is a lookahead policy, 

illustrated for a problem with discrete actions.





Lookahead policies

Decision trees:



Lookahead policies

Modeling lookahead policies

» Lookahead policies solve a lookahead model, which is an 

approximation of the future.

» It is important to understand the difference between the:

• Base model – this is the model we are trying to solve by finding 

the best policy.  This is usually some form of simulator.

• The lookahead model, which is our approximation of the future 

to help us make better decisions now.

» The base model is typically a simulator, or it might be the 

real world.
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Lookahead policies

Monte Carlo tree search:

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,  S. Samothrakis and S. 

Colton, “A survey of Monte Carlo tree search methods,” IEEE Transactions on Computational Intelligence and AI in Games, 

vol. 4, no. 1, pp. 1–49, March 2012.
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The four classes of policies

» Policy function approximations (PFAs)

» Cost function approximations (CFAs)

» Value function approximations (VFAs)

» Direct lookahead policies (DLAs)

» A hybrid lookahead/CFA



Parametric cost function approximation

An energy storage problem:



Parametric cost function approximation

Forecasts evolve over time as new information arrives:

Actual

Rolling forecasts, 

updated each 

hour.







Forecast made at 

midnight:



Parametric cost function approximation

Benchmark policy – Deterministic lookahead



Parametric cost function approximation

Parametric cost function approximations

» Replace the constraint 

with:

» Lookup table modified forecasts (one adjustment term for 

each time in the future):

» Exponential function for adjustments (just two parameters)

» Constant adjustment (one parameter)
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Parametric cost function approximation

Improvement over deterministic benchmark:

Lookup table
Exponential

Constant



An energy storage problem

Consider a basic energy storage problem:

» We are going to show that with minor variations in the 

characteristics of this problem, we can make each class 

of policy work best.



An energy storage problem

We can create distinct flavors of this problem:

» Problem class 1 – Best for PFAs
• Highly stochastic (heavy tailed) electricity prices

• Stationary data

» Problem class 2 – Best for CFAs
• Stochastic prices and wind (but not heavy tailed)

• Stationary data

» Problem class 3 - Best for VFAs
• Stochastic wind and prices (but not too random)

• Time varying loads, but inaccurate wind forecasts

» Problem class 4 – Best for deterministic lookaheads
• Relatively low noise problem with accurate forecasts

» Problem class 5 – A hybrid policy worked best here
• Stochastic prices and wind, nonstationary data, noisy forecasts.



An energy storage problem

The policies

» The PFA:
• Charge battery when price is below p1

• Discharge when price is above p2

» The CFA
• Optimize over a horizon H; maintain upper and lower bounds (u, l) 

for every time period except the first (note that this is a hybrid with a 

lookahead). 

» The VFA
• Piecewise linear, concave value function in terms of energy, indexed 

by time.

» The lookahead (deterministic)
• Optimize over a horizon H (only tunable parameter) using forecasts of 

demand, prices and wind energy

» The lookahead CFA
• Use a lookahead policy (deterministic), but with a tunable parameter 

that improves robustness.



An energy storage problem

Each policy is best on certain problems

» Results are percent of posterior optimal solution

» … any policy might be best depending on the data.

Joint research with Prof. Stephan Meisel, University of Muenster, Germany.



Outline

Elements of a dynamic model

Modeling uncertainty

Designing policies

The four classes of policies

From deterministic to stochastic optimization



From deterministic to stochastic

Imagine that you would like to solve the time-dependent 

linear program:

» subject to

We can convert this to a proper stochastic model by 

replacing     with              and taking an expectation:

The policy               has to satisfy                   with transition function:
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Modeling 

Deterministic 

» Objective function

» Decision variables:

» Constraints: 

• at time t

• Transition function

Stochastic

» Objective function

» Policy

» Constraints at time t

» Transition function

» Exogenous information
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From deterministic to stochastic

Deterministic problems

» Modeling is important, but not 

central.

» Algorithms are the most 

important, and hardest part.

» Huh?

» Just add up the costs!!

Stochastic problems

» Modeling is the most 

important, and hardest, aspect 

of stochastic optimization

» Searching for policies is 

important, but less critical.

» Modeling uncertainty is often 

overlooked, but is of central 

importance.

» Evaluating a policy is 

important, and difficult.  In a 

simulator?  In the field?



The universal objective function

with

You next need to develop a stochastic model:

» Model uncertainty about parameters in 𝑆0
» Model the stochastic process 𝑊1,𝑊2, … ,𝑊𝑁 (for training)

» Model the random variable  𝑊 (for testing, if necessary)

Then search for policies:

» Policy search:
• PFAs, CFAs

» Lookahead policies:
• VFAs, DLAs
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Thank you!

For more information, go to

http://www.castlelab.princeton.edu/jungle/

Scroll to “Educational materials”

http://www.castlelab.princeton.edu/jungle/
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