
Machine Learning and Optimization

November 2017

Aida Khajavirad

Carnegie Mellon University
aida@cmu.edu



Machine Learning

• Machine learning studies computer algorithms for learning to do better in
the future based on what was experienced in the past using some sort of
observations or data; e.g. spam filtering, medical diagnosis, face detection.
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• Supervised learning (regression and classification), Unsupervised learning
(clustering, density estimation)
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Parameter Estimation

• Maximum Likelihood Estimation (MLE): Let the observations x1, . . . , xm ∈ R
n

be described by a PMF parameterized by θ: p(x; θ). Then a MLE is a value of
θ under which the observations are most likely. Assuming xi are independent:

θ∗ML = argmaxθ p(x1, . . . , xm; θ) = argmaxθ

m
∏

i=1

p(xi; θ)

• Log-likelihood function:log p(x1, . . . , xm; θ) =
∑m

i=1
log p(xi; θ)

• Maximum a posteriori Estimation (MAP):

θ∗MAP = argmaxθ p(θ|(x1, . . . , xm)) = argmaxθ p((x1, . . . , xm)|θ)p(θ)

The MAP estimation procedure allows us to inject our prior beliefs about
parameter values into the new estimate.
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Linear Regression

• Linear measurement model: yi = θTxi + vi, i = 1, . . . ,m where θ ∈ R
n is the

vector of unknown parameters and vi is IID noise with density p(z).

• Gaussian noise: p(z) = 1/
√

2φσ2 exp(−z2/(2σ2)). The log-likelihood is

−m/2 log(2φσ2)− 1/σ2

m
∑

i=1

(θTxi − yi)
2

ML estimate with a Gaussian noise is the least square solution

minimizeθ

m
∑

i=1

(θTxi − yi)
2

• Laplace noise p(z) = 1/(2b) exp−|z|/b The log-likelihood function is

−m log(2b)− 1/b
m
∑

i=1

|θTxi − yi|

ML estimate with a Laplace noise is the l1-norm solution (robust regression)

minimizeθ

m
∑

i=1

|θTxi − yi|
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Bayesian Linear Regression

• IID Gaussian priors give ridge regression (aka Tikhonov regularization):

minimizeθ

m
∑

i=1

(θTxi − yi)
2 + λ||θ||22

for some λ > 0.

• IID Laplace priors give the LASSO estimate:

minimizeθ

m
∑

i=1

(θTxi − yi)
2 + λ||θ||1

for some λ > 0. Can be equivalently stated in a constrained form:

minimizeθ

m
∑

i=1

(θTxi − yi)
2 subject to ||θ||1 ≤ T,

for some T > 0.

• Regularization controls the model complexity and avoids overfitting
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Sparse Regression

• In many applications such as feature selection and compressed sensing, it is
desirable to assume that the true regression coefficient θ is sparse.

• The best subset selection problem:

minimizeθ||y −Xθ||22 subject to ||θ||0 ≤ k,

where l0 (pseudo) norm of a vector θ counts the number of nonzeros in θ.

• The cardinality constraint makes the above problem NP-hard.

• Replace the nonconvex cardinality constraint by the convex constraint ||θ||1 ≤ k
and use LASSO as a heuristic to get sparse solutions.

conv{(θ, γ) : ||θ||∞ ≤ 1, ||θ||0 ≤ γ} = {(θ, γ) : ||θ||∞ ≤ 1, ||θ||1 ≤ γ}
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Sparse Regression – MIQP Reformulation

• Suppose that ||θ||∞ ≤ MU . Introduce binary variables zi ∈ {0, 1} for all
i = 1, . . . , n. Then the best subset selection problem can be equivalently
written as the following Mixed-Integer Quadratic Programm:

minimizeθ,z

m
∑

i=1

(βTxi − yi)
2

subject to −MUzi ≤ θi ≤ MUzi
n
∑

i=1

zi ≤ k

z ∈ {0, 1}n

• Bertsimas et all show that the solutions provided by the MIP approach often
significantly outperform Lasso in achieving sparse models.
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Classification

• In pattern recognition and classification problems, we are given two sets of
points in R

n, {x1, . . . , xN} and {y1, . . . yM}, and wish to find a function f (or
a family of functions) such that

f(xi) > 0, i = 1, . . . , N, f(yi) < 0, i = 1, . . .M

If these inequalities hold, we say that f separates or classifies the two sets of
points.
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Linear Classification

• Separate two sets of points {x1, . . . , xN} and {y1, . . . , yM} by a hyperplane:

aTxi + b > 0, i = 1, . . . , N, aTyi + b < 0, i = 1, . . . ,M

• These inequalities are homogenous in a and b and hence equivalent to:

aTxi + b ≥ 1, i = 1, . . . , N, aTyi + b ≤ −1, i = 1, . . . ,M

• We can find (a, b) by solving a linear optimization problem
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Robust Linear Classification

• Separate the two sets of points by the maximum margin:

• The distance between the two hyperplanes H1 = {z : aTz + b = 1} and
H2 = {z : aTz + b = −1} is 2/||a||2

minimizea,b ||a||2

subject to aTxi + b ≥ 1, i = 1, . . . , N

aTyi + b ≤ −1, i = 1, . . . ,M
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Approximate Linear Classification

• Minimize the number of misclassified points (not tractable):

minimizea,b,u,v ||u||0 + ||v||0

subject to aTxi + b ≥ 1− ui, i = 1, . . . , N

aTyi + b ≤ −1 + vi, i = 1, . . . ,M

u ≥ 0, v ≥ 0

• Use the l1-norm trick to obtain an LP:

minimizea,b,u,v

N
∑

i=1

ui +
M
∑

i=1

vi

subject to aTxi + b ≥ 1− ui, i = 1, . . . , N

aTyi + b ≤ −1 + vi, i = 1, . . . ,M

u ≥ 0, v ≥ 0
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Support Vector Machines (SVM)

• Address the trade-off between the size of the margin and the classification error:

minimizea,b,u,v ||a||2 + γ(

N
∑

i=1

ui +

M
∑

i=1

vi)

subject to aTxi + b ≥ 1− ui, i = 1, . . . , N

aTyi + b ≤ −1 + vi, i = 1, . . . ,M

u ≥ 0, v ≥ 0
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SVM Classification

• Feature vectors xi ∈ R
n, i = 1, . . . , N , binary labels yi ∈ {−1, 1}. Linear

classifier defined by a ∈ R
n, b ∈ R: f(x) = aTx + b. Perfect separation if

yi(a
Txi + b) ≥ 1:

minimizea,b,ξ
1

2
||a||22 + γ

N
∑

i=1

ξi

subject to yi(a
Txi + b) ≥ 1− ξi, i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N

• Define Kij = (yiyj)x
T
i xj. Then the dual is given by (a convex QP):

minimizeλ
1

2
λTKλ−

N
∑

i=1

λi

subject to
N
∑

i=1

yiλi = 0

0 ≤ λi ≤ γ, i = 1, . . . , N
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The Kernel Trick

• By KKT conditions, at an optimal solution we have a =
∑N

i=1
λiyixi. Thus,

the classifier can be written as:

f(x) =
N
∑

i=1

λiyi(x
T
i x) + b

• A much more powerful classifier can be obtained, by lifting the feature vector
xi into a higher-dimensional space by a function φ : Rn → R

t and classify in
that space. Dual formulation remains the same by redefining K as:

Kij = (yiyj)φ(xi)
Tφ(xj),

which gives the classifier f(x) =
∑N

i=1
λiyiφ(xi)

Tφ(x) + b

• Only need to compute inner products; instead of φ work with a kernel function
K : Rn × R

n → R. If K is continuous, symmetric in arguments, and positive
definite, there exists a Hilbert space and a function φ in this space such that
K(x, x̄) = φ(x)Tφ(x̄).
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The Kernel Trick

• Select a kernel k, form Kij = yiyjk(xi, xj), solve the dual to obtain λ and b,
and use the classifier

N
∑

i=1

λiyiK(xi, x) + b

• Most popular kernels:

– Linear: k(x, x̄) = xT x̄
– Gaussian: k(x, x̄) = exp(||x− x̄||2)
– Polynomial: k(x, x̄) = (xT x̄+ 1)d

• φ(x1, x2) = (x1, x2, x
2
1, x1x2, x

2
2)
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Neural Networks – Motivation
• Polynomial kernel SVM:

• Why don’t we also learn φ(x)?
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Artificial Neuron

x1 xm

1

w1 wm

b

• Neuron pre-activation: a(x) = b + wTx, where w are the connection weights
and b is the neuron bias

• Neuron activation: h(x) = g(b+wTx), where g is called the activation function

• Common activation functions:

– sigmoid g(a) = 1/(1 + exp(−a))
– hyperbolic tangent g(a) = (exp(2a)− 1)/(exp(2a) + 1)
– rectified linear activation function g(a) = max{0, a}
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Single hidden-layer neural network
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Multi-layer neural network

• Universal approximation theorem (Hornik, 1991): a single hidden layer neural
network with a linear output unit can approximate any continuous function
arbitrarily well, given enough hidden units”

• It does not mean there is a learning algorithm that can find the necessary
parameter values!
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Deep learning

• A deep architecture can represent certain functions exponentially more
compactly

• Any Boolean function can be represented by a single hidden layer network;
however, it might require an exponential number of hidden units

• There are Boolean functions which

– require an exponential number of hidden units in the single layer case
– require a polynomial number of hidden units if we can adapt the number of

layers

• Training is hard! Heuristic methods such as stochastic gradient descent tend
to work well in practice; many many success stories!
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