Machine Learning and Optimization

November 2017

Aida Khajavirad

Carnegie Mellon University aida@cmu.edu

Machine Learning

• Machine learning studies computer algorithms for learning to do better in the future based on what was experienced in the past using some sort of observations or data; e.g. spam filtering, medical diagnosis, face detection.

• Supervised learning (regression and classification), Unsupervised learning (clustering, density estimation)

Parameter Estimation

 Maximum Likelihood Estimation (MLE): Let the observations x₁,..., x_m ∈ ℝⁿ be described by a PMF parameterized by θ: p(x; θ). Then a MLE is a value of θ under which the observations are most likely. Assuming x_i are independent:

$$\theta_{\mathrm{ML}}^* = \operatorname{argmax}_{\theta} p(x_1, \dots, x_m; \theta) = \operatorname{argmax}_{\theta} \prod_{i=1}^m p(x_i; \theta)$$

- Log-likelihood function: $\log p(x_1, \dots, x_m; \theta) = \sum_{i=1}^m \log p(x_i; \theta)$
- Maximum a posteriori Estimation (MAP):

$$\theta_{\text{MAP}}^* = \operatorname{argmax}_{\theta} p(\theta|(x_1, \dots, x_m)) = \operatorname{argmax}_{\theta} p((x_1, \dots, x_m)|\theta) p(\theta)$$

The MAP estimation procedure allows us to inject our prior beliefs about parameter values into the new estimate.

Linear Regression

- Linear measurement model: $y_i = \theta^T x_i + v_i$, i = 1, ..., m where $\theta \in \mathbb{R}^n$ is the vector of unknown parameters and v_i is IID noise with density p(z).
- Gaussian noise: $p(z) = 1/\sqrt{2\phi\sigma^2} \exp(-z^2/(2\sigma^2))$. The log-likelihood is

$$-m/2\log(2\phi\sigma^2) - 1/\sigma^2 \sum_{i=1}^m (\theta^T x_i - y_i)^2$$

ML estimate with a Gaussian noise is the least square solution

• Laplace noise $p(z) = 1/(2b) \exp{-|z|/b}$ The log-likelihood function is

$$-m\log(2b) - 1/b\sum_{i=1}^{m} |\theta^T x_i - y_i|$$

ML estimate with a Laplace noise is the l_1 -norm solution (robust regression)

Bayesian Linear Regression

• IID Gaussian priors give ridge regression (aka Tikhonov regularization):

for some $\lambda > 0$.

• IID Laplace priors give the LASSO estimate:

for some $\lambda > 0$. Can be equivalently stated in a constrained form:

minimize_{\theta} \sum_{i=1}^{m} (\theta^T x_i - y_i)^2 subject to
$$||\theta||_1 \le T$$
,

for some T > 0.

• Regularization controls the model complexity and avoids overfitting

Sparse Regression

- In many applications such as feature selection and compressed sensing, it is desirable to assume that the true regression coefficient θ is sparse.
- The best subset selection problem:

minimize_{θ} $||y - X\theta||_2^2$ subject to $||\theta||_0 \le k$,

where l_0 (pseudo) norm of a vector θ counts the number of nonzeros in θ .

- The cardinality constraint makes the above problem NP-hard.
- Replace the nonconvex cardinality constraint by the convex constraint $||\theta||_1 \le k$ and use LASSO as a heuristic to get sparse solutions.

 $\operatorname{conv}\{(\theta,\gamma): ||\theta||_{\infty} \le 1, ||\theta||_{0} \le \gamma\} = \{(\theta,\gamma): ||\theta||_{\infty} \le 1, ||\theta||_{1} \le \gamma\}$

Sparse Regression – MIQP Reformulation

• Suppose that $||\theta||_{\infty} \leq M_U$. Introduce binary variables $z_i \in \{0,1\}$ for all $i = 1, \ldots, n$. Then the best subset selection problem can be equivalently written as the following Mixed-Integer Quadratic Programm:

minimize_{\theta,z}
$$\sum_{i=1}^{m} (\beta^{T} x_{i} - y_{i})^{2}$$
subject to
$$-M_{U} z_{i} \leq \theta_{i} \leq M_{U} z_{i}$$
$$\sum_{i=1}^{n} z_{i} \leq k$$
$$z \in \{0,1\}^{n}$$

• Bertsimas et all show that the solutions provided by the MIP approach often significantly outperform Lasso in achieving sparse models.

Classification

• In pattern recognition and classification problems, we are given two sets of points in \mathbb{R}^n , $\{x_1, \ldots, x_N\}$ and $\{y_1, \ldots, y_M\}$, and wish to find a function f (or a family of functions) such that

$$f(x_i) > 0, \ i = 1, \dots, N, \quad f(y_i) < 0, \ i = 1, \dots, M$$

If these inequalities hold, we say that f separates or classifies the two sets of points.

Linear Classification

• Separate two sets of points $\{x_1, \ldots, x_N\}$ and $\{y_1, \ldots, y_M\}$ by a hyperplane:

$$a^T x_i + b > 0, \ i = 1, \dots, N, \quad a^T y_i + b < 0, \ i = 1, \dots, M$$

• These inequalities are homogenous in *a* and *b* and hence equivalent to:

$$a^T x_i + b \ge 1, \ i = 1, \dots, N, \quad a^T y_i + b \le -1, \ i = 1, \dots, M$$

• We can find (a, b) by solving a linear optimization problem

Robust Linear Classification

• Separate the two sets of points by the maximum margin:

• The distance between the two hyperplanes $H_1 = \{z : a^T z + b = 1\}$ and $H_2 = \{z : a^T z + b = -1\}$ is $2/||a||_2$

minimize_{*a,b*}
$$||a||_2$$

subject to $a^T x_i + b \ge 1, i = 1, \dots, N$
 $a^T y_i + b \le -1, i = 1, \dots, M$

Approximate Linear Classification

• Minimize the number of misclassified points (not tractable):

minimize_{*a,b,u,v*}
$$||u||_0 + ||v||_0$$

subject to
 $a^T x_i + b \ge 1 - u_i, \ i = 1, \dots, N$
 $a^T y_i + b \le -1 + v_i, \ i = 1, \dots, M$
 $u \ge 0, \ v \ge 0$

• Use the l_1 -norm trick to obtain an LP:

minimize_{*a,b,u,v*}
$$\sum_{i=1}^{N} u_i + \sum_{i=1}^{M} v_i$$

subject to
$$a^T x_i + b \ge 1 - u_i, \ i = 1, \dots, N$$
$$a^T y_i + b \le -1 + v_i, \ i = 1, \dots, M$$
$$u \ge 0, \ v \ge 0$$

Support Vector Machines (SVM)

• Address the trade-off between the size of the margin and the classification error:

minimize_{*a,b,u,v*}
$$||a||_2 + \gamma(\sum_{i=1}^N u_i + \sum_{i=1}^M v_i)$$

subject to
 $a^T x_i + b \ge 1 - u_i, \ i = 1, \dots, N$
 $a^T y_i + b \le -1 + v_i, \ i = 1, \dots, M$
 $u \ge 0, \ v \ge 0$

SVM Classification

• Feature vectors $x_i \in \mathbb{R}^n$, i = 1, ..., N, binary labels $y_i \in \{-1, 1\}$. Linear classifier defined by $a \in \mathbb{R}^n$, $b \in R$: $f(x) = a^T x + b$. Perfect separation if $y_i(a^T x_i + b) \ge 1$:

minimize_{*a,b,ξ*}
$$\frac{1}{2}||a||_2^2 + \gamma \sum_{i=1}^N \xi_i$$

subject to $y_i(a^T x_i + b) \ge 1 - \xi_i, \ i = 1, \dots, N$
 $\xi_i \ge 0, \ i = 1, \dots, N$

• Define $K_{ij} = (y_i y_j) x_i^T x_j$. Then the dual is given by (a convex QP):

minimize_{$$\lambda$$} $\frac{1}{2}\lambda^T K\lambda - \sum_{i=1}^N \lambda_i$
subject to $\sum_{i=1}^N y_i \lambda_i = 0$
 $0 \le \lambda_i \le \gamma, \ i = 1, \dots, N$

The Kernel Trick

• By KKT conditions, at an optimal solution we have $a = \sum_{i=1}^{N} \lambda_i y_i x_i$. Thus, the classifier can be written as:

$$f(x) = \sum_{i=1}^{N} \lambda_i y_i(x_i^T x) + b$$

• A much more powerful classifier can be obtained, by lifting the feature vector x_i into a higher-dimensional space by a function $\phi : \mathbb{R}^n \to \mathbb{R}^t$ and classify in that space. Dual formulation remains the same by redefining K as:

$$K_{ij} = (y_i y_j) \phi(x_i)^T \phi(x_j),$$

which gives the classifier $f(x) = \sum_{i=1}^{N} \lambda_i y_i \phi(x_i)^T \phi(x) + b$

• Only need to compute inner products; instead of ϕ work with a kernel function $K : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$. If K is continuous, symmetric in arguments, and positive definite, there exists a Hilbert space and a function ϕ in this space such that $K(x, \bar{x}) = \phi(x)^T \phi(\bar{x})$.

The Kernel Trick

• Select a kernel k, form $K_{ij} = y_i y_j k(x_i, x_j)$, solve the dual to obtain λ and b, and use the classifier

$$\sum_{i=1}^{N} \lambda_i y_i K(x_i, x) + b$$

- Most popular kernels:
 - Linear: $k(x, \bar{x}) = x^T \bar{x}$ - Gaussian: $k(x, \bar{x}) = \exp(||x - \bar{x}||^2)$
 - Polynomial: $k(x, \bar{x}) = (x^T \bar{x} + 1)^d$
- $\phi(x_1, x_2) = (x_1, x_2, x_1^2, x_1 x_2, x_2^2)$

Neural Networks – Motivation

• Polynomial kernel SVM:

• Why don't we also learn $\phi(x)$?

Artificial Neuron

• Neuron pre-activation: $a(x) = b + w^T x$, where w are the connection weights and b is the neuron bias

- Neuron activation: $h(x) = g(b + w^T x)$, where g is called the activation function
- Common activation functions:
 - sigmoid $g(a) = 1/(1 + \exp(-a))$
 - hyperbolic tangent $g(a) = (\exp(2a) 1)/(\exp(2a) + 1)$
 - rectified linear activation function $g(a) = \max\{0, a\}$

Single hidden-layer neural network

Multi-layer neural network

- Universal approximation theorem (Hornik, 1991): a single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units"
- It does not mean there is a learning algorithm that can find the necessary parameter values!

Deep learning

- A deep architecture can represent certain functions exponentially more compactly
- Any Boolean function can be represented by a single hidden layer network; however, it might require an exponential number of hidden units
- There are Boolean functions which
 - require an exponential number of hidden units in the single layer case
 - require a polynomial number of hidden units if we can adapt the number of layers
- Training is hard! Heuristic methods such as stochastic gradient descent tend to work well in practice; many many success stories!