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Machine Learning

e Machine learning studies computer algorithms for learning to do better in
the future based on what was experienced in the past using some sort of
observations or data; e.g. spam filtering, medical diagnosis, face detection.
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e Supervised learning (regression and classification), Unsupervised learning
(clustering, density estimation)



Parameter Estimation

e Maximum Likelihood Estimation (MLE): Let the observations x4, ..., z,, € R"
be described by a PMF parameterized by 6: p(z;6). Then a MLE is a value of
6 under which the observations are most likely. Assuming x; are independent:

™m
Oy, = argmaxy p(T1, ..., Tm; ) = argmax, HP(CU@‘; 0)
i=1

e Log-likelihood function:logp(z1,...,2m;0) = > . logp(z;; 0)
e Maximum a posteriori Estimation (MAP):
Oxiap = argmaxy p(0|(x1,...,Tm)) = argmaxy p((z1,...,Tmn)|0)p(0)

The MAP estimation procedure allows us to inject our prior beliefs about
parameter values into the new estimate.



Linear Regression

e Linear measurement model: y; = 072, +v;, i = 1,...,m where § € R" is the
vector of unknown parameters and v; is lID noise with density p(z).

e Gaussian noise: p(z) = 1/1/2¢02 exp(—2%/(20?)). The log-likelihood is

—m/2log(2¢0”) — 1/0” i (0" z; — y;)?
i—1

ML estimate with a Gaussian noise is the least square solution

m
minimizeg E CaY:
i=1

e Laplace noise p(z) = 1/(2b) exp —|z|/b The log-likelihood function is

—mlog(2b) — 1/52 |9T517z' — il

i=1
ML estimate with a Laplace noise is the [;-norm solution (robust regression)

m
minimizeg g 0% 2; — ;]
i=1



Bayesian Linear Regression

e |ID Gaussian priors give ridge regression (aka Tikhonov regularization):
minimizeg Z SN

for some \ > 0.

e |ID Laplace priors give the LASSO estimate:
minimizeg Z NI
for some XA > 0. Can be equivalently stated in a constrained form:

minimizey Z )? subject to ||0]|; < T,

for some T > 0.

e Regularization controls the model complexity and avoids overfitting



Sparse Regression

In many applications such as feature selection and compressed sensing, it is
desirable to assume that the true regression coefficient 6 is sparse.

The best subset selection problem:

minimizeg||y — X0||3 subject to ||0]|o < k,
where [y (pseudo) norm of a vector 6 counts the number of nonzeros in 6.
The cardinality constraint makes the above problem NP-hard.

Replace the nonconvex cardinality constraint by the convex constraint ||6||; < k
and use LASSO as a heuristic to get sparse solutions.

conv{(6,7) : [|0]loc < 1,[10lo <~} ={(0,7) : [|0llcc <1, 1|0][x <}



Sparse Regression — MIQP Reformulation

e Suppose that ||0||cc < My. Introduce binary variables z; € {0,1} for all
1 = 1,...,n. Then the best subset selection problem can be equivalently
written as the following Mixed-Integer Quadratic Programm:

m
minimizeg Z (BT z; — y;)?
i=1
subject to —Myz; <0, < Myz;

n

i=1
z e {0,1}"

e Bertsimas et all show that the solutions provided by the MIP approach often
significantly outperform Lasso in achieving sparse models.



Classification

e In pattern recognition and classification problems, we are given two sets of
points in R™, {x1,...,xn} and {y1,...ynr}, and wish to find a function f (or
a family of functions) such that

f(ZCZ')>O,’i=1,...,N, f(yi)<0,’i=1,...M

If these inequalities hold, we say that f separates or classifies the two sets of
points.
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Linear Classification

e Separate two sets of points {z1,...,zn} and {y1,...,yn} by a hyperplane:

alz;,+b>0,i=1,...,N, aly;+b<0,i=1,...,M
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e These inequalities are homogenous in a and b and hence equivalent to:

alz;+b>1i=1,...,N, aly;+b<-1,i=1,....M

e We can find (a,b) by solving a linear optimization problem



Robust Linear Classification

e Separate the two sets of points by the maximum margin:

e The distance between the two hyperplanes H; = {z : al2z + b = 1} and
Hy={z:al24+0b=—1}is 2/||all|

minimize, , ||all2
subject to alz;+b>1,i=1,...,N
aly, +b<—-1,i=1,...,M



Approximate Linear Classification

e Minimize the number of misclassified points (not tractable):

MINIMIZEq p 4, 0

subject to

[lullo + []v]lo
alw;,+b>1—wu; i=1,...

aly, +b< —14wv;,i=1,...

u>0,v>0

e Use the [;-norm trick to obtain an LP:

N M
MINIMIZEq p 4, 0 E ui—l—g V;
i=1 i=1

subject to

alw;+b>1—wu; i=1,...

aly, +b< 14w, i=1,...

uw>0,v>0
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Support Vector Machines (SVM)

e Address the trade-off between the size of the margin and the classification error:

N M
MINIMIZeq p 4, 0 all2 + V(Z (I Z ;)
i=1 i=1

subject to alw;,+b>1—wu;, i=1,...,N
aly,+b< 14w, i=1,....,M
u>0,v>0
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SVM Classification

e Feature vectors z; € R™, ¢ = 1,..., N, binary labels y; € {—1,1}. Linear
classifier defined by a € R", b € R: f(x) = a’x + b. Perfect separation if

y;(atz; +b) > 1:

N
. 1
minimize, p ¢ §||aH§-|-’YE &
i=1

subject to  y;(alz; +b)>1-&,i=1,...,N
£>0i=1,....N

e Define K;; = (y;y;)x} z;. Then the dual is given by (a convex QP):

N
1
minimize 5)\TK A — Z Y

1=1

N
subject to Zyi)‘i =0

i=1

OS)\Z'S"}/, iIl,...,N
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The Kernel Trick

e By KKT conditions, at an optimal solution we have a = Zfll AiYix;. Thus,
the classifier can be written as:

N
fl@) = Nyi(z]z)+b
1=1

e A much more powerful classifier can be obtained, by lifting the feature vector
x; into a higher-dimensional space by a function ¢ : R® — R? and classify in
that space. Dual formulation remains the same by redefining K as:

Kij = (yiy;) (i) o),
which gives the classifier f(z) = S A\yip(x;) T () + b
e Only need to compute inner products; instead of ¢ work with a kernel function

K :R" x R" — R. If K is continuous, symmetric in arguments, and positive
definite, there exists a Hilbert space and a function ¢ in this space such that

K(z,2) = ¢(z)" ¢(2).
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The Kernel Trick

o Select a kernel k, form K;; = y;y;k(x;,x;), solve the dual to obtain A and b,
and use the classifier

N
> AwiK (xi, ) +b
i—1

e Most popular kernels:

— Linear: k(z,z) = 2!z

— Gaussian: k(xz,z) = exp(||lr — =
— Polynomial: k(z,z) = (212 +1

)
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Neural Networks — Motivation
e Polynomial kernel SVM:

o ey ‘
@y = signW p() +b)
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Fixed & (x)

e Why don’t we also learn ¢(z)?

y=wl¢(x)

- 00000

¢ (x)



Artificial Neuron

e Neuron pre-activation: a(z) = b+ w!x, where w are the connection weights
and b is the neuron bias

e Neuron activation: h(x) = g(b+w?!x), where g is called the activation function

e Common activation functions:

— sigmoid g(a) = 1/(1 + exp(—a))
— hyperbolic tangent g(a) = (exp(2a) — 1)/(exp(2a) + 1)
— rectified linear activation function g(a) = max{0, a}
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Single hidden-layer neural network

* Hidden layer pre-activation:
a(x) = bV + Wilix

(a(x]i = hgl) + ZJ. Hf'l.(j)_rj)

» Hidden layer activation:

h(x) = g(a(x))

» Output layer activation:

f(x) =tb(2) -+ W{Q)Th(l)x) .

output activation function
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Multi-layer neural network

e Universal approximation theorem (Hornik, 1991): a single hidden layer neural
network with a linear output unit can approximate any continuous function
arbitrarily well, given enough hidden units”

e |t does not mean there is a learning algorithm that can find the necessary
parameter values!

* Could have L hidden layers:

» layer input pre-activation for k>0 (h®(x) = x)

al®)(x) = b*®) + W) p(k-1)(x)

» hidden layer activation (k from 1 to L):

h®) (x) = g(a®(x))

» output layer activation (k=L+1):

h(E+1) (x) = o(at+1)(x)) = f(x)
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Deep learning

A deep architecture can represent certain functions exponentially more
compactly

Any Boolean function can be represented by a single hidden layer network;
however, it might require an exponential number of hidden units
There are Boolean functions which

— require an exponential number of hidden units in the single layer case
— require a polynomial number of hidden units if we can adapt the number of
layers

Training is hard! Heuristic methods such as stochastic gradient descent tend
to work well in practice; many many success stories!
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