Machine Learning

• Machine learning studies computer algorithms for learning to do better in the future based on what was experienced in the past using some sort of observations or data; e.g. spam filtering, medical diagnosis, face detection.

• Supervised learning (regression and classification), Unsupervised learning (clustering, density estimation)
Parameter Estimation

- **Maximum Likelihood Estimation (MLE):** Let the observations $x_1, \ldots, x_m \in \mathbb{R}^n$ be described by a PMF parameterized by θ: $p(x; \theta)$. Then a MLE is a value of θ under which the observations are most likely. Assuming x_i are independent:

$$
\theta^*_{\text{ML}} = \arg\max_{\theta} p(x_1, \ldots, x_m; \theta) = \arg\max_{\theta} \prod_{i=1}^{m} p(x_i; \theta)
$$

- **Log-likelihood function:**

$$
\log p(x_1, \ldots, x_m; \theta) = \sum_{i=1}^{m} \log p(x_i; \theta)
$$

- **Maximum a posteriori Estimation (MAP):**

$$
\theta^*_{\text{MAP}} = \arg\max_{\theta} p(\theta|(x_1, \ldots, x_m)) = \arg\max_{\theta} p((x_1, \ldots, x_m)|\theta)p(\theta)
$$

The MAP estimation procedure allows us to inject our prior beliefs about parameter values into the new estimate.
Linear Regression

- Linear measurement model: \(y_i = \theta^T x_i + v_i, \ i = 1, \ldots, m \) where \(\theta \in \mathbb{R}^n \) is the vector of unknown parameters and \(v_i \) is IID noise with density \(p(z) \).

- Gaussian noise: \(p(z) = 1/\sqrt{2\phi\sigma^2} \exp(-z^2/(2\sigma^2)) \). The log-likelihood is

\[
-m/2 \log(2\phi\sigma^2) - 1/\sigma^2 \sum_{i=1}^{m} (\theta^T x_i - y_i)^2
\]

ML estimate with a Gaussian noise is the least square solution

\[
\text{minimize}_{\theta} \sum_{i=1}^{m} (\theta^T x_i - y_i)^2
\]

- Laplace noise \(p(z) = 1/(2b) \exp(-|z|/b) \) The log-likelihood function is

\[
-m \log(2b) - 1/b \sum_{i=1}^{m} |\theta^T x_i - y_i|
\]

ML estimate with a Laplace noise is the \(l_1 \)-norm solution (robust regression)

\[
\text{minimize}_{\theta} \sum_{i=1}^{m} |\theta^T x_i - y_i|
\]
Bayesian Linear Regression

- **IID Gaussian priors** give ridge regression (aka Tikhonov regularization):

 \[
 \text{minimize}_{\theta} \sum_{i=1}^{m} (\theta^T x_i - y_i)^2 + \lambda ||\theta||_2^2
 \]

 for some \(\lambda > 0 \).

- **IID Laplace priors** give the **LASSO** estimate:

 \[
 \text{minimize}_{\theta} \sum_{i=1}^{m} (\theta^T x_i - y_i)^2 + \lambda ||\theta||_1
 \]

 for some \(\lambda > 0 \). Can be equivalently stated in a constrained form:

 \[
 \text{minimize}_{\theta} \sum_{i=1}^{m} (\theta^T x_i - y_i)^2 \text{ subject to } ||\theta||_1 \leq T,
 \]

 for some \(T > 0 \).

- **Regularization controls the model complexity and avoids overfitting**
Sparse Regression

- In many applications such as feature selection and compressed sensing, it is desirable to assume that the true regression coefficient θ is **sparse**.

- The best subset selection problem:

 \[
 \text{minimize}_{\theta} \| y - X \theta \|^2_2 \quad \text{subject to} \quad \| \theta \|_0 \leq k,
 \]

 where l_0 (pseudo) norm of a vector θ counts the number of nonzeros in θ.

- The **cardinality constraint** makes the above problem NP-hard.

- Replace the nonconvex cardinality constraint by the **convex constraint** $\| \theta \|_1 \leq k$ and use **LASSO** as a heuristic to get sparse solutions.

 \[
 \text{conv}\{(\theta, \gamma) : \| \theta \|_\infty \leq 1, \| \theta \|_0 \leq \gamma\} = \{(\theta, \gamma) : \| \theta \|_\infty \leq 1, \| \theta \|_1 \leq \gamma\}
 \]
Suppose that $||\theta||_\infty \leq M_U$. Introduce binary variables $z_i \in \{0, 1\}$ for all $i = 1, \ldots, n$. Then the best subset selection problem can be equivalently written as the following Mixed-Integer Quadratic Programm:

$$\begin{align*}
\text{minimize}_{\theta, z} & \quad \sum_{i=1}^{m} (\beta^T x_i - y_i)^2 \\
\text{subject to} & \quad -M_U z_i \leq \theta_i \leq M_U z_i \\
& \quad \sum_{i=1}^{n} z_i \leq k \\
& \quad z \in \{0, 1\}^n
\end{align*}$$

Bertsimas et al. show that the solutions provided by the MIP approach often significantly outperform Lasso in achieving sparse models.
Classification

In pattern recognition and classification problems, we are given two sets of points in \mathbb{R}^n, \{x_1, \ldots, x_N\} and \{y_1, \ldots y_M\}, and wish to find a function f (or a family of functions) such that

$$f(x_i) > 0, \ i = 1, \ldots, N, \quad f(y_i) < 0, \ i = 1, \ldots M$$

If these inequalities hold, we say that f separates or classifies the two sets of points.
Linear Classification

• Separate two sets of points \(\{x_1, \ldots, x_N\} \) and \(\{y_1, \ldots, y_M\} \) by a hyperplane:

\[
a^T x_i + b > 0, \quad i = 1, \ldots, N, \quad a^T y_i + b < 0, \quad i = 1, \ldots, M
\]

• These inequalities are homogenous in \(a \) and \(b \) and hence equivalent to:

\[
a^T x_i + b \geq 1, \quad i = 1, \ldots, N, \quad a^T y_i + b \leq -1, \quad i = 1, \ldots, M
\]

• We can find \((a, b)\) by solving a linear optimization problem
Robust Linear Classification

- Separate the two sets of points by the maximum margin:

- The distance between the two hyperplanes $H_1 = \{z : a^T z + b = 1\}$ and $H_2 = \{z : a^T z + b = -1\}$ is $2/\|a\|_2$

$$\begin{align*}
\text{minimize}_{a,b} & \quad \|a\|_2 \\
\text{subject to} & \quad a^T x_i + b \geq 1, \ i = 1, \ldots, N \\
& \quad a^T y_i + b \leq -1, \ i = 1, \ldots, M
\end{align*}$$
Approximate Linear Classification

- Minimize the number of misclassified points (not tractable):

\[
\begin{align*}
\text{minimize}_{a,b,u,v} & \quad ||u||_0 + ||v||_0 \\
\text{subject to} & \quad a^T x_i + b \geq 1 - u_i, \ i = 1, \ldots, N \\
& \quad a^T y_i + b \leq -1 + v_i, \ i = 1, \ldots, M \\
& \quad u \geq 0, \ v \geq 0
\end{align*}
\]

- Use the l_1-norm trick to obtain an LP:

\[
\begin{align*}
\text{minimize}_{a,b,u,v} & \quad \sum_{i=1}^{N} u_i + \sum_{i=1}^{M} v_i \\
\text{subject to} & \quad a^T x_i + b \geq 1 - u_i, \ i = 1, \ldots, N \\
& \quad a^T y_i + b \leq -1 + v_i, \ i = 1, \ldots, M \\
& \quad u \geq 0, \ v \geq 0
\end{align*}
\]
Support Vector Machines (SVM)

- Address the trade-off between the size of the margin and the classification error:

\[
\begin{align*}
\text{minimize}_{a,b,u,v} & \quad ||a||_2 + \gamma \left(\sum_{i=1}^{N} u_i + \sum_{i=1}^{M} v_i \right) \\
\text{subject to} & \quad a^T x_i + b \geq 1 - u_i, \quad i = 1, \ldots, N \\
& \quad a^T y_i + b \leq -1 + v_i, \quad i = 1, \ldots, M \\
& \quad u \geq 0, \quad v \geq 0
\end{align*}
\]
SVM Classification

- Feature vectors $x_i \in \mathbb{R}^n$, $i = 1, \ldots, N$, binary labels $y_i \in \{-1, 1\}$. Linear classifier defined by $a \in \mathbb{R}^n$, $b \in \mathbb{R}$: $f(x) = a^T x + b$. Perfect separation if $y_i(a^T x_i + b) \geq 1$:

 $$\text{minimize}_{a, b, \xi} \quad \frac{1}{2}||a||^2 + \gamma \sum_{i=1}^N \xi_i$$

 subject to $\quad y_i(a^T x_i + b) \geq 1 - \xi_i, \ i = 1, \ldots, N$

 $\quad \xi_i \geq 0, \ i = 1, \ldots, N$

- Define $K_{ij} = (y_i y_j) x_i^T x_j$. Then the dual is given by (a convex QP):

 $$\text{minimize}_\lambda \quad \frac{1}{2} \lambda^T K \lambda - \sum_{i=1}^N \lambda_i$$

 subject to $\quad \sum_{i=1}^N y_i \lambda_i = 0$

 $\quad 0 \leq \lambda_i \leq \gamma, \ i = 1, \ldots, N$
The Kernel Trick

• By KKT conditions, at an optimal solution we have \(a = \sum_{i=1}^{N} \lambda_i y_i x_i \). Thus, the classifier can be written as:

\[
f(x) = \sum_{i=1}^{N} \lambda_i y_i (x_i^T x) + b
\]

• A much more powerful classifier can be obtained, by lifting the feature vector \(x_i \) into a higher-dimensional space by a function \(\phi : \mathbb{R}^n \to \mathbb{R}^t \) and classify in that space. Dual formulation remains the same by redefining \(K \) as:

\[
K_{ij} = (y_i y_j) \phi(x_i)^T \phi(x_j),
\]

which gives the classifier \(f(x) = \sum_{i=1}^{N} \lambda_i y_i \phi(x_i)^T \phi(x) + b \)

• Only need to compute inner products; instead of \(\phi \) work with a kernel function \(K : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R} \). If \(K \) is continuous, symmetric in arguments, and positive definite, there exists a Hilbert space and a function \(\phi \) in this space such that \(K(x, \bar{x}) = \phi(x)^T \phi(\bar{x}) \).
The Kernel Trick

- Select a kernel k, form $K_{ij} = y_i y_j k(x_i, x_j)$, solve the dual to obtain λ and b, and use the classifier

$$\sum_{i=1}^{N} \lambda_i y_i K(x_i, x) + b$$

- Most popular kernels:
 - Linear: $k(x, \bar{x}) = x^T \bar{x}$
 - Gaussian: $k(x, \bar{x}) = \exp(||x - \bar{x}||^2)$
 - Polynomial: $k(x, \bar{x}) = (x^T \bar{x} + 1)^d$

- $\phi(x_1, x_2) = (x_1, x_2, x_1^2, x_1 x_2, x_2^2)$
Neural Networks – Motivation

- Polynomial kernel SVM:

$$y = \text{sign}(w^T\phi(x) + b)$$

- Why don’t we also learn $$\phi(x)$$?

$$y = w^T\phi(x)$$
Artificial Neuron

- Neuron pre-activation: \(a(x) = b + w^T x \), where \(w \) are the connection weights and \(b \) is the neuron bias.

- Neuron activation: \(h(x) = g(b + w^T x) \), where \(g \) is called the activation function.

- Common activation functions:
 - sigmoid \(g(a) = \frac{1}{1 + \exp(-a)} \)
 - hyperbolic tangent \(g(a) = \frac{\exp(2a) - 1}{\exp(2a) + 1} \)
 - rectified linear activation function \(g(a) = \max\{0, a\} \)
Single hidden-layer neural network

- Hidden layer pre-activation:
 \[a(x) = b^{(1)} + W^{(1)} x \]
 \[(a(x)_i = b^{(1)}_i + \sum_j W^{(1)}_{i,j} x_j) \]

- Hidden layer activation:
 \[h(x) = g(a(x)) \]

- Output layer activation:
 \[f(x) = o \left(b^{(2)} + w^{(2)^T} h^{(1)} x \right) \]
Multi-layer neural network

- Universal approximation theorem (Hornik, 1991): a single hidden layer neural network with a linear output unit can approximate any continuous function arbitrarily well, given enough hidden units.

- It does not mean there is a learning algorithm that can find the necessary parameter values!
Deep learning

- A deep architecture can represent certain functions exponentially more compactly

- Any Boolean function can be represented by a single hidden layer network; however, it might require an exponential number of hidden units

- There are Boolean functions which
 - require an exponential number of hidden units in the single layer case
 - require a polynomial number of hidden units if we can adapt the number of layers

- Training is hard! Heuristic methods such as stochastic gradient descent tend to work well in practice; many many success stories!