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Introduction

We don’t really know, do we?

a) Deep neural networks are poised to impact a host new set 
of applications

b) They have almost run their course and will produce little 
beyond what has currently been achieved (which has been 
impressive)

c) They will be replaced by simpler prediction systems that 
are easier to understand and interpret
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From the viewpoint of optimization

a) Training deep neural networks has been done with essentially the same 
optimization algorithm for the last 25 years (LeCun): the stochastic 
gradient method SGD. Momentum?

b) DNN are complex (nonlinear & non-convex), very high dimensional; 
we don’t understand why the training process actually works.

c) More questions arise every year and promising ideas are challenged
d) State-of-the-art: heuristics (batch normalization) and new architectures 

(residual networks) have greatly facilitated optimization

Given all of this, should we try develop new algorithms for training DNN?
i. For many the answer is NO
ii. I take a different view
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Opportunities

Although training DNNs seems so difficult and is so empirical, 
a) They provide motivation for revisiting some ideas (momentum?)
b) They suggest the development of new algorithms (variance reducing 

methods) that are bound to be useful in other domains
c) They pose interesting tradeoffs between computational and statistical

efficiency that need to be answered --- which require fresh explanations

Specifically:
i. Is the highly noisy & Markovian nature of the stochastic gradient 

method SGD essential in training?
ii. If not, is there a way to achieve statistical efficiency and obtaining a 

high level of parallelism that dramatically reduces training time?
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Current View

Algorithms whose iterates are random 
variables that are allowed  to wonder around 
perform a more effective exploration of  the data

and produce solutions (prediction functions) that generalize well

But a first order method suffers from ill conditioning. And the simple 
Markovian iteration of SGD is difficult to parallelize
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Our Proposal: A Progressive Sampling Method

• Use an increasingly accurate gradient (with a much larger batch) which 
enables data parallelism and the use of 2nd order information

• But, rather oddly, this could lead to generalization issues. The solutions 
obtained by SGD generalize better than those obtained with a large 
(fixed) sample

• This has been observed for many years (empirically); a dozen recent 
systematic studies

• The optimization method should be a good learning algorithm

• So the story gets complicated and it is best to start at the beginning: 
Why neural networks? What is the optimization problem?
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Deep neural networks

w• Spectacularly successful for image & speech 
recognition, machine translation, etc

• A highly nonlinear and non-convex predictor

Observe features in acoustic frames, predict phrase  “FREE SPEECH”
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How have Neural Networks achieved such success?

• Not well understood
• Higher capacity DNN: good generalization – contrary to learning 

theory?

Novak et al. 2018
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Notation

Prediction function h that depends on unknown parameter w, 
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Formal statements of the objective functions

Loss over entire
polulation
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Stochastic gradient methods

1                                          n

stochastic                     batch

Why not use an increasingly accurate gradient method (with a much larger batch) 
which enables data parallelism and the use of 2nd order information?

The idea is gaining traction, but …
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Two interesting new papers

Accuracy

Batch size

Goyal, He et al. 2017: From 29 hours of training time to 1 hour by 
increasing the batch size from 256 to 8k

Smith, Kindermans, Le (2017): batch of size 65k

Residual Network, Imagenet

We propose: Instead of choosing a fixed batch size: gradually increase it
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Understanding SGD

• Why does it converge, and for what classes of functions?  
• Do they include DNNs or only some?
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Fixed steplength                     Diminishing steplength

Converges linearly to
a neighborhood of the
solution

Converges sub-linearly
to the solution
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Optimization panorama                                 Bottou, Curtis, Nocedal 2018

Stochastic Gradient Batch Gradient
Method                                                           Method

Stochastic Newton
Method

Variance reduction methods

second-order methods

Batch Newton
Method
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Enable second order information

• Start by considering Newton’s method

• Can also subsample the Hessian
• Approximations to the Hessian with good statistical 

properties                                             Erdogdu & Montanari (2015)
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How fast to increase sample?               Focus on Expected Risk  F

Byrd, Chin, N. Wu, 2012
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How to use progressive sampling in practice?

• Practice: leads to much faster increases in sample sizes than desired

First idea: Norm Test
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Idea 2: Inner Product  Test                      Bollapragada, Byrd, N (2018) 

• Test designed to achieve descent sufficiently often
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Comparison

• Norm test                                 Inner Product Test

• Contrast to SG method
• Samples that satisfy Inner Product Test are smaller than for Norm Test
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Pause
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On the Steplengths
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• Different directions should be scaled differently
• For the noisy SGD method we will never find a formula for steplength 

that is universally practical
• Steplength tied up with noise suppression
• Mini-batching provides more freedom in choice of steplength

Deterministic Setting

Scaling the Search Direction



Constant steplength (popular with theoreticians)

• Lipschitz constant L– the most conservative choice
• Adaptive (global) Lipschitz estimation – can be out of phase

Scaling the Gradient Direction



1. Diagonal scaling  (Adagrad, Adam)

2. Assumes knowledge along coordinate directions (difficult)
3. Generally not practical in deterministic optimization
4. Success of Adam and Adagrad explained through statistical arguments

kx

Alternative:
• Instead of finding sophisticated steplength strategies, find method that 

produces well scaled directions
• Choice of steplength then becomes secondary
• Newton and quasi-Newton methods achieve this

Different gradient components should be scaled differently
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Newton’s method

1. An ideal iteration: scale invariant, local quadratic rate of convergence

2. The Hessian contains a lot of information, but too costly to form/invert
3. How to approximate Newton’s step?

Various Approaches:
1. Inexact Newton-CG – with subsampled Hessian  

• Computational unit: Hessian-vector product
2. Fischer Information – K-Fac Martens &Grosse 2017
3. Quasi-Newton – shows much potential

• Computational unit: gradient
4. Tensor based block diagonal structures   (Shampoo 2018)



• direction points along eigenvectors corresponding to smallest eigenvalues
• Inexact Newton methods are based on this observation

Newton

gradient

Strongly convex case (Hessian is positive definite)

A Fundamental Equation for Newton’s method
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Inexact Newton Method          (Newton-CG)

A symmetric positive definite linear system
Many iterative methods; CG considered best
Increasing subspace minimization properties

Nonconvex Case:
Run CG until negative curvature is encountered; follow that direction
Sometimes called the Hessian-Free method in the ML community

… and  on the important fact that an only matrix-vector products are needed
by  iterative methods like Conjugate Gradients to solve the equations

Newton

gradient
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Sub-sampled Hessian Newton Methods

1. Subsampled gradient and Hessian (or other approximations)
2. How to coordinate choice of gradient and Hessian sampling?
3. Inexact solution of linear systems
4. What iterative method to use?

• Conjugate gradient
• Stochastic gradient         Bullins 2016, Neumann

The stochastic nature of the objective creates opportunities:
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Eigenvalue Distribution of Hessian           Berahas, Bollapragada 2017
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Quasi-Newton methods

A major idea in deterministic optimization

1. Learn curvature of problem on the fly through gradient differences
2. Incorporate curvature information that has been observed
3. Construct a dense Hessian approximation
4. Limited memory version L-BFGS avoids the use of matrices, requires 

storage and computation of O(d)
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The BFGS method
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Progressive Sampling & Quasi-Newton Updating     Bollapragada, Shi 2018
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For years we observed this

10 epochs

Fast initial progress
of SG followed by drastic 
slowdown

Logistic regression;
speech data

Batch methods
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New Results: Progressive Sampling Quasi-Newton

Logistic Regression

• Results for DNN, in progress
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Tests: Logistic Regression- Test Error

Progressive batching
Quasi-Newton method

• Stochastic quasi-Newton methods with noisy gradients in the typical 
regime of the SG method have not proved effective.

• Bollapragada, Shi et al (2018) have shown that a surprisingly small 
batch (100, 200) offers opportunities for quasi-Newton methods
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An Open Question: Momentum and Acceleration 

• It appears to be quite popular for training deep neural
• But acceleration & momentum: not useful in deterministic 

optimization – where they originated
• Instead employ some 2nd order information using gradient 

differences
• Quasi-Newton and inexact Newton methods
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Momentum (Heavy Ball Method)

Beware of 2-d pictures!
kx

It is true that for convex quadratics the gradient method with momentum has a faster 
convergence rate than the pure gradient method
But: 
• One needs a good estimate of the condition number of the Hessian

• DNN are not quadratics! 
• Gradient method + momentum is not convergent on convex functions
• There are better iterative methods (CG) for quadratics 
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Consider what momentum can do in the non-convex case



• Popular since (Sutskever et al. 2013)
• Conjecture: it is not a real momentum method; neither a linear 

dynamical system with friction, nor Nesterov’s optimal iteration
• Instead: a form of iterate (or gradient) averaging

• Gap between practice and algorithmic understanding 
• Useful to compare with the Conjugate Gradient method

41

But momentum works in practice

Designed for quadratic objective functions; easy to compute parameters
Same form as momentum but requires no estimate of condition number 
For deterministic quadratic problems momentum is not better than CG
A version for nonlinear problems is available (PR+; see my website)
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Nesterov acceleration

• But is it relevant to practice?   FISTA                                     
• Even for convex problems, can it compete with quasi-Newton 

method?
• Suppose estimate of condition number is not accurate

• Many complexity papers on acceleration:
• Find a stationary point, escaping saddles, combine with other 

methods, etc.
• Very pessimistic results
• My view: need to move away from the complexity perspective and 

study smoothing & acceleration in a new statistical setting

Remarkable result:
• If eigenvalue information is available
• Rate of convergence is
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End
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