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Intelligent Coordination and 
Logistics Laboratory 

 

–  Adaptive traffic signal 
control [Traffic21, Heinz] 

The Robotics Institute, Carnegie Mellon University 
Stephen F. Smith, Research Professor and Director 

–  Mixed-Initiative Transportation Planning 
     [AFRL - USTRANSCOM] 

–  Dynamic, Real-Time 
Routing of Paratransit 

Vehicles [ATWIC] 

Focus: Scalable, execution-driven technologies for planning, 
scheduling and coordination 

Bringing	  Manufacturing	  to	  the	  Part	  
Wing	  

Assembly	  
Site	  

Finger	  Racks	  
Ribs	  

Spars	  Robot	  
Movement	  
Corridors	  

–  Multi-Robot Coordination for 
Aircraft Assembly [Boeing] 

−  Distributed management of joint 
plans for disaster response [DARPA] 



Execution-Driven Planning 
and Scheduling Technologies 

•  Organized around principle of “optimization in context” 
–  A plan/schedule is always in place and executing 
–  Continual integration of new demands, new information, new 

constraints, new results (coming from users, other agents, 
execution system) 

–  Continual refinement of task/domain model 
 •  Some key attributes: 

− Decision-making in pace with 
execution 

− Plans that account for and 
hedge against uncertainty 

−  Incremental change and 
solution stability  

	  



The AMC Allocator: 
Advanced Scheduling for the USAF Air Mobility Command 

•  Problem: Day-to-day allocation 
of aircraft & crews to airlift, tanker 
missions 

•  Characteristics 
– Large scale: 1,000s of missions; 

100s of assets 
– Continuous, dynamic stream of 

mission requirements 

•  Core Technology: Incremental, 
constraint-based search 
–  integration of new requirements into the 

schedule to minimize deadhead travel time 
– Controlled reallocation of existing missions 

to maximize resource usage 
– Extended iterative search to further 

optimize if time permits 

•  Status: Embedded in AMC’s 
operational planning system 

Carnegie Mellon	


Origin!

Air-POE!

Sea-POE!

Sea-POD!

Air-POD!

Destination!



AMC Airlift Allocation Problem 

A!
B!

C!

Wing1!
Wing2!

Decisions:!
•  Assign  resources 

(aircraft, aircrews) 
from Wing1or 
Wing2?!

•  Start at what time?!

•  Mission1:!
pick up 
cargo at A, 
deliver to B, 
then C.!

•  Mission2!
     …!
•  Missionn!

Requests:!

Constraints:!
•  Aircraft, aircrew capacity at different 

locations!
•  positioning/de-positioning time!
•  crew duty day/crew rest!
•  cargo pickup and drop off windows !
•  mission priority!
•  port throughout!

Objective:!
•  Maximize number of  

missions 
flown(oversubscribed 
form)!

•  Minimize total late days!



Outline of Talk 
•  Incremental Constraint-based Solution 

Generators 
•  Adding Optimizing Search Procedures 

– Heuristic-Biased Stochastic Sampling 
– Task Swap 

•  Generating Resilient Schedules 
– Hedging Against Temporal Uncertainty 
– Probabilistic Analysis of Deterministic 

Schedules 
•  Current Focus 
 



Constraint-Based Search 
Models 

Properties: 
– Modeling Generality/Expressiveness 
–  Incremental 
– Compositional 

Active Data Base 
(Current Solution) 

Constraint Propagation 

Commitment 
Strategies/ 
Heuristics 

Conflict 
Handling 

Components:	  



Scheduling a New Task 

Generate	  Possible	  Intervals	  

Generate	  Resources	  

IR1,1	   IR1,2	   IR2,1	  
...	  

R1	  

AssignTask:	  
[Rtype1,Rtype2]	  [t1,t2]	  

R3	   R4	  R2	  

...	  IR2,2	   IR3,2	  
...	   IR4,1	  

...	  IR3,1	  

Taski	   Taskk	  Taskj	  R2	  



Scheduling a New Task 

Generate	  Possible	  Intervals	  

Generate	  Resources	  

IR1,1	   IR1,2	   IR2,1	  
...	  

R1	  

AssignTask:	  
[Rtype1,Rtype2]	  [t1,t2]	  

R3	   R4	  R2	  

...	  IR2,2	   IR3,2	  
...	   IR4,1	  

...	  IR3,1	  

Apply	  aircraR/cargo	  compaTbility	  
constraints	  to	  filter	  possible	  air	  wings	  

Apply	  aircraR,	  crew	  capacity	  
constraints,	  mission	  Tme	  
bounds,	  mission	  priority,	  
port	  capacity	  and	  crew	  duty	  
day	  constraints	  to	  filter	  
possible	  intervals	  Evaluate	  opTons	  and	  select	  best:	  

Obest	  =	  argmin(w1*PDDist(Oj)	  +	  w2*	  st(Oj)),	  

where	  	  
•  PDDist	  is	  total	  pos/depos	  distance	  and	  
•  st	  is	  the	  start	  Tme	  

j	  



Option Generation 

•  Core search procedure is configurable to 
support generation of options when all 
constraints cannot be met 
– Treat time windows as relaxable and minimize 

delay 
– Relax capacity constraints and minimize 

number of extra tails/crews needed 
– Bump one or more lower-priority tasks to 

insert new task and minimize disruption 



Configuring A Basic  
Scheduling Search Model 

•  Couple core search 
procedure with a 
prioritization heuristic to 
produce greedy solution 
generator 

• Embed in larger 
optimizing search by 

IR1,1	   IR1,2	   IR2,1	  ...	  

R1	  

AssignTask:	  t	  
[Rtype1,Rtype2]	  [t1,t2]	  

R3	   R4	  R2	  

...	  IR2,2	   IR3,2	  
...	   IR4,1	   ...	  IR3,1	  

1.  Dynamically	  changing	  the	  randomizing	  the	  heurisTc	  
and	  iteraTvely	  re-‐invoking	  the	  core	  procedure	  

2.  Using	  the	  core	  procedure	  to	  seed	  a	  local	  search	  

FOR	  t	  =	  t1,	  t2,	  …	  tn	  in	  priority	  order	  DO	  



Outline of Talk 
•  Incremental Constraint-based Solution 

Generators 
•  Adding Optimizing Search Procedures 

– Heuristic-Biased Stochastic Sampling 
– Task Swap 

•  Generating Resilient Schedules 
– Hedging Against Temporal Uncertainty 
– Probabilistic Analysis of Deterministic 

Schedules 
•  Current Focus 
 



Amplifying the Performance of 
Heuristics via Stochastic Search 
Starting assumption: We have a good search 

heuristic, but its discriminatory power varies from 
context to context 

Issue: How to balance adherence to heuristic 
against possibility of missing better solutions 

Basic Approach:  
–  Randomize the heuristic to enable search in the 

neighborhood of the heuristic’s trajectory 
–  Calibrate the degree of randomness to the level of 

uncertainty in a given decision context 



Heuristic-Biased Stochastic Sampling 
− At each decision point, order the possible choices 

according to a search heuristic.   
− Choose branch of search space randomly but biased 

according to a function of this ordering. 
− Rank-based bias (Bresina 1996): Use rank order and 

choose branch bi with probability: 

− Value-based bias (Cicirello & Smith 2004): Use 
heuristic value assigned and choose branch bi with 
probability: 

∑
j

j

i

brankbias
brankbias
))((
))((

∑
j

j

i

bvaluebias
bvaluebias
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Application to Single Machine 
Weighted Tardiness Problem: 

The Search Space 

Setup	  Tme	  Jobs	  

wj	  
pj	  

exp	  	  	  –	  (	   )	  –	  
slj	  
k2	  s	  

max(dj	  –	  pj	  –	  t,	  0)	  
k1	  p	  

ATCSj(t,l)	  =	  

Min	  ∑	  wi	  Max(0,ci-‐di	  )	  



Percentage Improvement over 
Deterministic ATCS Rule 

13.63	  

17.21	  

0.88	  

6.40	  

38.98	  

Rank	  
10	  

15.35	  

20.94	  

0.91	  

8.38	  

45.14	  

Value	  
10	  

Moderate	  	  
setups	  

Severe	  	  
setups	  

Tight	  	  
due-‐dates	  

Medium	  	  
due-‐dates	  

Loose	  	  
due-‐dates	  

Rank	  
100	  

18.93	  

24.37	  

1.83	  

10.73	  

52.38	  

20.16	  

27.03	  

1.71	  

13.73	  

55.35	  

Value	  
100	  

Rank	  
1	  

6.69	  

4.34	  

0.21	  

1.47	  

14.86	  

6.86	  

8.12	  

0.04	  

2.13	  

20.29	  

Value	  
1	  #	  Restarts	  

•  Significant	  cost	  performance	  advantage	  also	  shown	  wrt	  
Limited	  Discrepancy	  Search,	  a	  systemaTc	  procedure	  
designed	  to	  exploit	  a	  good	  heurisTc	  



Task Swapping 
[Kramer and Smith 2003,2004,2005] 

Controlled schedule revision to accommodate 
additional tasks without relaxing constraints 

Motivation:  
–  Incremental, priority-based scheduling can result in 

fragmented resource usage, but  
–  Re-allocation is disruptive and should be minimized 

Basic Approach 
–  Temporarily relax priority constraint 
–  Conduct repair-based search around the “footprint” of 

an unassignable task t’s feasible execution window 
–  If all tasks displaced to accommodate t cannot be 

feasibly reinserted, Undo 



An Example 

Unassignable task, T1 

T2 

  T5 

T4 

T6 

T8 T7 

T9 

T12 

T10 

T11 

T15 T13 

CapR=7 

T14 

T3 

R!

T2 Assigned task, T1 

  T5 

T4 

T6 

T8 T7 

T9 

T12 

T10 

T11 

T15 T13 

CapR=7 

T14 

T3 

R 

Re-scheduled task T2 

Un-scheduled task T2 

CapR=7 

R 



Retraction Heuristics 

•  Max-Flexibility = task-duration/feasible-window-size 
•  Min-Conflicts = count intervals that are at-capacity which 

conflict with a task’s feasible window. 
•  Min-Contention = conflict-count * conflict duration 

Unassignable 
task T6 

C1 C2 

T1 
est st ft lft 

T2 

T3 

T4 

T5 



General Task Swap Procedure 
•  Given an unassignable task t to insert into the 

schedule, 
1.  Identify where conflicts with that task exist. 
2.  Retract 1 or more tasks in the conflicted areas to 

free up capacity 
3.  Schedule task t, and mark it as “seen.” 
4.  Re-schedule the retracted tasks. 
5.  If all retracted tasks cannot be re-scheduled, 

recurse on them, most constrained first. 
6.  If all tasks have been tested (seen) and some 

remain  unassignable, backtrack to original state. 



Application to AMC Domain 
•  Original Results: Real-world 

data sets from AMC Airlift 
mission scheduling domain 
(982 missions, 3251 tasks, 12 
AirWings) 
–  overall 42% of initially 

unassignable missions 
successfully integrated 

Average Number of Unassignables

0
5

10
15
20
25
30
35
40
45
50

10% 20% 30% 40% 50%

Problem Set

Begin
Random 
Min-contention 
Min-conflicts 
Max-flexibility 

•  More Recent Work:  
–  order of magnitude speedup resulting from 

incorporation of better pruning techniques 
–  additional 20% improvement via use of iterated 

stochastic search 



Generalized Task Swap 
[Rubinstein, Smith, Barbulescu 2012] 

•  Extension to operate with 
arbitrary task networks 

•  Application to dynamic 
dial-a-ride problems 

0	  

5	  

10	  

15	  

20	  

25	  

#	  	  
Infeasible	  
	  Instances	  

Number	  of	  instances	  with	  unscheduled	  requests	  
Comparison	  with	  TS	  and	  CP	  (Berbeglia	  et	  al.,	  2011)	  

None	  

EST	  

Most-‐
constrained	  

D1	  

D1	  

D1	  

D1	  

D2	   D2	  
D2	  

D2	  

D3	  

D3	  

D3	  

D3	  

D4	  
D4	  

D4	  

D5	  

D5	  

D5	  

D5	  

0	  

5	  

10	  

15	  

20	  

25	  

30	  

35	  

Original	   90%	   85%	   75%	  

Unscheduled	  
Requests	  

Problem	  Set	  

GTS	  versus	  Base	  Search	  Procedure	  for	  Five	  Days	  
of	  Real	  Access	  Data	  

BaseSearch	  

GTS	  

Results:	  
•  Comparable	  performance	  to	  state	  

of	  the	  art	  solvers	  
•  >	  50%	  reducTon	  in	  unschedulable	  

requests	  over	  baseline	  scheduler	  at	  
ACCESS	  TransportaTon	  Systems	  



Outline of Talk 
•  Incremental Constraint-based Solution 

Generators 
•  Adding Optimizing Search Procedures 

– Heuristic-Biased Stochastic Sampling 
– Task Swap 

•  Generating Resilient Schedules 
– Hedging Against Temporal Uncertainty 
– Probabilistic Analysis of Deterministic 

Schedules 
•  Current Focus 
 



Hedging Against the Possibility of 
Unexpected Task Behavior 

Complementary Perspective: Build schedules that 
retain flexibility and can absorb some amount of 
unpredictability in execution 

• task execution windows instead of precise times 
• resource options instead of precise assignments 
• process redundancy to increase likelihood of success 

 	


Task	  2	


R1	
 Task	  1	

Task	  2	


R1	
 Task	  1	


Basic Approach: Partial-order scheduling procedures 
!



Partial Order Schedules 
•  Sequence activities that are competing for the 

same resources and let start and end times float 

time	

R1! OP2,1! OP1,2! OP2,1! OP1,2!

time	


OP1,2!

OP2,1!

R1!



Slack	  between	  two	  ac^vi^es	  

Characterizing Schedule Robustness 

•  Fluidity: average slack in the schedule 

•  Flexibility: average nbr. of ordered activities 

100
)1(
|),(),(|
×

−××

−
=∑ ≠lh

aaaa

NNH
esdsedrb hllh
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(Aloulou	  &	  Portmann	  ‘03)	  



Basic Constraint-Posting Cycle 

Time	  feasible	  task	  network	  

Impose	  
Capacity	  
Constraint	  

Peak	  1	  
C	  

Peak	  2	  

Resource	  
Leveling	  

Task 2 

Task 1 

Peak	  1	  
C	  

Peak2	  

Peak	  2	  

	  
Constraint	  
Propaga^on	  	  

C	  

Deadline	   27	  

Task 2 

Task 1 Time	  feasible	  task	  network	  



Building Robust Schedules:  
A Counter-Intuitive Result 

[Policella, Smith, Cesta, Oddi - 2004] 

•  Envelope-based approach can produce more fluid 
solutions but inefficient and generally ineffective 

•  Introduction of heuristic bias improves ability to find 
solutions but degrades fluidity 

•  ESTAC solution procedure generally dominates	  	  	  

Envelope-‐based	  
commitment	  

(EBA)!

EST	  solu^on	  +	  
generaliza^on	  

(ESTAC)	  



ESTAC: Earliest Start Time Analysis 
with Chaining 

Two Step process   
1.  Generate a fixed-time 

solution using earliest  
start time profile 

2.  Transform solution into 
a partial order schedule 
(POS) through chaining 

 



Some Theoretical Properties 

•  Chaining step is makespan, tardiness 
preserving 

•  No loss in generality in focusing on 
Chaining Form POSs 



Searching for  
Robust Schedules 

[Policella, Cesta, Oddi, Smith - 2004] 

•  Search in the space of Chaining Form 
solutions 
–  Iterated application of stochastic chaining 

procedure 
–  Robustness metric as objective criterion 
–  Incorporation of chaining heuristics 

C=4	   C=4	  

A	  Chaining	  Form	  POS! A	  Beder	  Chaining	  Form	  POS!



Chaining Heuristics 
•  Avoid synchronization points: Put activities requiring 

multiple resource units on common chains 

•  Allocate synergistically with problem constraints: 
Put activities that are already ordered on the same chain 

C=4	  

Which	  resource	  units?	  

C=4	  

Where?	  



Results 

•  Experimentation on Resource Constrained 
Project Scheduling Problem (RCPSP) 
Benchmarks previously solved by basic 
chaining procedure 

•  Improvement in robustness on both metrics: 
–  90% for Flexibility 
–  18% for Fluidity (where basic procedure already 

produces good results) 
•  Incorporation of chaining heuristics speeds 

up search process 



Schedule Strengthening 
through Uncertainty Analysis 

[Hiatt, Zimmerman, Smith, Simmons 2009] 
•  Issue: How to take advantage of knowledge about 

uncertainty 
–  Reasoning with explicit models of uncertainty enables 

(expected) optimal solutions, but do not scale well 
–  Deterministic (flexible times) scheduling is much more 

scalable but associated controllability models are overly 
conservative 

•  Basic Approach: 
–  Construct partial order (flexible) schedule that maximizes 

quality under deterministic modeling assumptions 
–  Use explicit analysis of uncertainty to identify weak points and 

take schedule strengthening actions 



Strengthening Deterministic 
Schedules 

•  Assumptions: 
–  Probability distributions associated with task durations 

and outcomes (payoff or “quality” accrued) 
–  Tasks not completed by their deadline fail 

•  Possible strengthening actions: 
–  Substitute tasks with lower failure likelihoods and/or 

shorter durations 
–  Schedule redundant back-up tasks to increase 

probability of some level of success 
•  Goal: Boost likelihood that the quality projected by the 

deterministic schedule will be accrued during execution 



Probabilistic Analysis of 
Deterministic Schedules (PADS) 
•  Compute for each task, the probability of 

failing (achieving zero quality) 
•  For each task with non-zero probability, 

compute expected quality loss if it fails 
•  In order of expected quality loss, attempt 

to strengthen tasks 
•  Only keep strengthening actions that 

increase the schedule’s expected quality 



Probabilistic Analysis (PADS) 
Example 

TaskGroup 

EnsureSafety RestorePower 
Deadline: 125 

SweepPowerPlant 
Qual: 15 

Dur: 14 (50%), 16 (50%) 
Owner: Agent A  

RestoreFullPower 
Qual: 5 

Dur: 10 (100%) 
Owner: Agent B 

enables 

ProvideTempPower 
Qual: 4 

Dur: 6 (50%), 8 (50%) 
Owner: Agent A or B 

Agent A’s 
schedule: 

SPP (15) 
t=100 

Agent B’s 
schedule: 

RFP (10) enables 

114 (50%), 116 (50%) 

124 (50%), 126 (50%) 

sum 

max 

37 



Probabilistic Analysis (PADS) 
Example 

Agent A’s 
schedule: 

SPP (15) 
t=100 

Agent B’s 
schedule: 

RFP (10) enables 

114 (50%), 116 (50%) 

124 (50%), 126 (50%) 

EQ: 17.5 

EQ: 2.5 EQ: 15 

TaskGroup 

EnsureSafety RestorePower 
Deadline: 125 

SweepPowerPlant 
Qual: 15 

Dur: 14 (50%), 16 (50%) 
Owner: Agent A  

RestoreFullPower 
Qual: 5 

Dur: 10 (100%) 
Owner: Agent B 

enables 

ProvideTempPower 
Qual: 4 

Dur: 6 (50%), 8 (50%) 
Owner: Agent A or B 

sum 

EQ: 15 EQ: 2.5 max 

38 



Schedule Strengthening 
Example 

Agent A’s 
schedule: 

t=100 

Agent B’s 
schedule: 

120 (25%), 122 (50%), 
124 (25%) PTP (7) 

EQ: 17.5  19 

EQ: 2.5 4 EQ: 15 

EQ: 15 EQ: 4 

enables 124 (50%), 126 (50%) 

114 (50%), 116 
(50%) SPP (15) 

RFP (10) 

TaskGroup 

EnsureSafety RestorePower 
Deadline: 125 

SweepPowerPlant 
Qual: 15 

Dur: 14 (50%), 16 (50%) 
Owner: Agent A  

RestoreFullPower 
Qual: 5 

Dur: 10 (100%) 
Owner: Agent B 

enables 

ProvideTempPower 
Qual: 4 

Dur: 6 (50%), 8 (50%) 
Owner: Agent A or B 

sum 

max EQ: 2.5 

39 



Executing Strengthened 
Schedules 
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•  Simulated schedule 
execution under 2 starting 
conditions: 
•  Initial deterministic 

schedule 
•  Strengthened schedule 

•  No rescheduling allowed 
during execution (with 
basic conflict resolution on) 

•  Results: 
•  Strengthened schedules 

earned on average 36% 
more quality (p < 0.01) 



Summary 
•  Scheduling in dynamic and uncertain domains 

requires a balance of pro-active and reactive 
decision-making 
–  In multi-actor settings, the need for incremental 

change and solution stability has implications for the 
approach taken to optimization 

–  Pro-active consideration of uncertainty can reduce the 
burden of execution-time schedule management 

•  Constraint-based planning and scheduling 
models support both of these complementary 
perspectives 



Current Focus 

•  Distributed coordination and optimization 
Frameworks 
– Adaptive Traffic Signal Control 
– Automated Manufacturing 
– Task Allocation in Distributed Sensor 

Networks 
•  Learning task models and constraints 
•  Scheduling to maximize resilience to 

constraint violations 
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