
Constraint-Based Planning
and Scheduling Models

Stephen F. Smith
The Robotics Institute

Carnegie Mellon University

CAPD	
 EWO	
 Seminar	
 –	
 November	
 27,	
 2012	

Intelligent Coordination and
Logistics Laboratory

–  Adaptive traffic signal
control [Traffic21, Heinz]

The Robotics Institute, Carnegie Mellon University
Stephen F. Smith, Research Professor and Director

–  Mixed-Initiative Transportation Planning
 [AFRL - USTRANSCOM]

–  Dynamic, Real-Time
Routing of Paratransit

Vehicles [ATWIC]

Focus: Scalable, execution-driven technologies for planning,
scheduling and coordination

Bringing	
 Manufacturing	
 to	
 the	
 Part	

Wing	

Assembly	

Site	

Finger	
 Racks	

Ribs	

Spars	
 Robot	

Movement	

Corridors	

–  Multi-Robot Coordination for
Aircraft Assembly [Boeing]

−  Distributed management of joint
plans for disaster response [DARPA]

Execution-Driven Planning
and Scheduling Technologies

•  Organized around principle of “optimization in context”
–  A plan/schedule is always in place and executing
–  Continual integration of new demands, new information, new

constraints, new results (coming from users, other agents,
execution system)

–  Continual refinement of task/domain model
 •  Some key attributes:

− Decision-making in pace with
execution

− Plans that account for and
hedge against uncertainty

−  Incremental change and
solution stability

	

The AMC Allocator:
Advanced Scheduling for the USAF Air Mobility Command

•  Problem: Day-to-day allocation
of aircraft & crews to airlift, tanker
missions

•  Characteristics
– Large scale: 1,000s of missions;

100s of assets
– Continuous, dynamic stream of

mission requirements

•  Core Technology: Incremental,
constraint-based search
–  integration of new requirements into the

schedule to minimize deadhead travel time
– Controlled reallocation of existing missions

to maximize resource usage
– Extended iterative search to further

optimize if time permits

•  Status: Embedded in AMC’s
operational planning system

Carnegie Mellon	

Origin!

Air-POE!

Sea-POE!

Sea-POD!

Air-POD!

Destination!

AMC Airlift Allocation Problem

A!
B!

C!

Wing1!
Wing2!

Decisions:!
•  Assign resources

(aircraft, aircrews)
from Wing1or
Wing2?!

•  Start at what time?!

•  Mission1:!
pick up
cargo at A,
deliver to B,
then C.!

•  Mission2!
 …!
•  Missionn!

Requests:!

Constraints:!
•  Aircraft, aircrew capacity at different

locations!
•  positioning/de-positioning time!
•  crew duty day/crew rest!
•  cargo pickup and drop off windows !
•  mission priority!
•  port throughout!

Objective:!
•  Maximize number of

missions
flown(oversubscribed
form)!

•  Minimize total late days!

Outline of Talk
•  Incremental Constraint-based Solution

Generators
•  Adding Optimizing Search Procedures

– Heuristic-Biased Stochastic Sampling
– Task Swap

•  Generating Resilient Schedules
– Hedging Against Temporal Uncertainty
– Probabilistic Analysis of Deterministic

Schedules
•  Current Focus

Constraint-Based Search
Models

Properties:
– Modeling Generality/Expressiveness
–  Incremental
– Compositional

Active Data Base
(Current Solution)

Constraint Propagation

Commitment
Strategies/
Heuristics

Conflict
Handling

Components:	

Scheduling a New Task

Generate	
 Possible	
 Intervals	

Generate	
 Resources	

IR1,1	
 IR1,2	
 IR2,1	

...	

R1	

AssignTask:	

[Rtype1,Rtype2]	
 [t1,t2]	

R3	
 R4	
 R2	

...	
 IR2,2	
 IR3,2	

...	
 IR4,1	

...	
 IR3,1	

Taski	
 Taskk	
 Taskj	
 R2	

Scheduling a New Task

Generate	
 Possible	
 Intervals	

Generate	
 Resources	

IR1,1	
 IR1,2	
 IR2,1	

...	

R1	

AssignTask:	

[Rtype1,Rtype2]	
 [t1,t2]	

R3	
 R4	
 R2	

...	
 IR2,2	
 IR3,2	

...	
 IR4,1	

...	
 IR3,1	

Apply	
 aircraR/cargo	
 compaTbility	

constraints	
 to	
 filter	
 possible	
 air	
 wings	

Apply	
 aircraR,	
 crew	
 capacity	

constraints,	
 mission	
 Tme	

bounds,	
 mission	
 priority,	

port	
 capacity	
 and	
 crew	
 duty	

day	
 constraints	
 to	
 filter	

possible	
 intervals	
 Evaluate	
 opTons	
 and	
 select	
 best:	

Obest	
 =	
 argmin(w1*PDDist(Oj)	
 +	
 w2*	
 st(Oj)),	

where	
 	

•  PDDist	
 is	
 total	
 pos/depos	
 distance	
 and	

•  st	
 is	
 the	
 start	
 Tme	

j	

Option Generation

•  Core search procedure is configurable to
support generation of options when all
constraints cannot be met
– Treat time windows as relaxable and minimize

delay
– Relax capacity constraints and minimize

number of extra tails/crews needed
– Bump one or more lower-priority tasks to

insert new task and minimize disruption

Configuring A Basic
Scheduling Search Model

•  Couple core search
procedure with a
prioritization heuristic to
produce greedy solution
generator

• Embed in larger
optimizing search by

IR1,1	
 IR1,2	
 IR2,1	
 ...	

R1	

AssignTask:	
 t	

[Rtype1,Rtype2]	
 [t1,t2]	

R3	
 R4	
 R2	

...	
 IR2,2	
 IR3,2	

...	
 IR4,1	
 ...	
 IR3,1	

1.  Dynamically	
 changing	
 the	
 randomizing	
 the	
 heurisTc	

and	
 iteraTvely	
 re-­‐invoking	
 the	
 core	
 procedure	

2.  Using	
 the	
 core	
 procedure	
 to	
 seed	
 a	
 local	
 search	

FOR	
 t	
 =	
 t1,	
 t2,	
 …	
 tn	
 in	
 priority	
 order	
 DO	

Outline of Talk
•  Incremental Constraint-based Solution

Generators
•  Adding Optimizing Search Procedures

– Heuristic-Biased Stochastic Sampling
– Task Swap

•  Generating Resilient Schedules
– Hedging Against Temporal Uncertainty
– Probabilistic Analysis of Deterministic

Schedules
•  Current Focus

Amplifying the Performance of
Heuristics via Stochastic Search
Starting assumption: We have a good search

heuristic, but its discriminatory power varies from
context to context

Issue: How to balance adherence to heuristic
against possibility of missing better solutions

Basic Approach:
–  Randomize the heuristic to enable search in the

neighborhood of the heuristic’s trajectory
–  Calibrate the degree of randomness to the level of

uncertainty in a given decision context

Heuristic-Biased Stochastic Sampling
− At each decision point, order the possible choices

according to a search heuristic.
− Choose branch of search space randomly but biased

according to a function of this ordering.
− Rank-based bias (Bresina 1996): Use rank order and

choose branch bi with probability:

− Value-based bias (Cicirello & Smith 2004): Use
heuristic value assigned and choose branch bi with
probability:

∑
j

j

i

brankbias
brankbias
))((
))((

∑
j

j

i

bvaluebias
bvaluebias
))((
))((

Application to Single Machine
Weighted Tardiness Problem:

The Search Space

Setup	
 Tme	
 Jobs	

wj	

pj	

exp	
 	
 	
 –	
 (
)	
 –	

slj	

k2	
 s	

max(dj	
 –	
 pj	
 –	
 t,	
 0)	

k1	
 p	

ATCSj(t,l)	
 =	

Min	
 ∑	
 wi	
 Max(0,ci-­‐di	
)	

Percentage Improvement over
Deterministic ATCS Rule

13.63	

17.21	

0.88	

6.40	

38.98	

Rank	

10	

15.35	

20.94	

0.91	

8.38	

45.14	

Value	

10	

Moderate	
 	

setups	

Severe	
 	

setups	

Tight	
 	

due-­‐dates	

Medium	
 	

due-­‐dates	

Loose	
 	

due-­‐dates	

Rank	

100	

18.93	

24.37	

1.83	

10.73	

52.38	

20.16	

27.03	

1.71	

13.73	

55.35	

Value	

100	

Rank	

1	

6.69	

4.34	

0.21	

1.47	

14.86	

6.86	

8.12	

0.04	

2.13	

20.29	

Value	

1	
 #	
 Restarts	

•  Significant	
 cost	
 performance	
 advantage	
 also	
 shown	
 wrt	

Limited	
 Discrepancy	
 Search,	
 a	
 systemaTc	
 procedure	

designed	
 to	
 exploit	
 a	
 good	
 heurisTc	

Task Swapping
[Kramer and Smith 2003,2004,2005]

Controlled schedule revision to accommodate
additional tasks without relaxing constraints

Motivation:
–  Incremental, priority-based scheduling can result in

fragmented resource usage, but
–  Re-allocation is disruptive and should be minimized

Basic Approach
–  Temporarily relax priority constraint
–  Conduct repair-based search around the “footprint” of

an unassignable task t’s feasible execution window
–  If all tasks displaced to accommodate t cannot be

feasibly reinserted, Undo

An Example

Unassignable task, T1

T2

 T5

T4

T6

T8 T7

T9

T12

T10

T11

T15 T13

CapR=7

T14

T3

R!

T2 Assigned task, T1

 T5

T4

T6

T8 T7

T9

T12

T10

T11

T15 T13

CapR=7

T14

T3

R

Re-scheduled task T2

Un-scheduled task T2

CapR=7

R

Retraction Heuristics

•  Max-Flexibility = task-duration/feasible-window-size
•  Min-Conflicts = count intervals that are at-capacity which

conflict with a task’s feasible window.
•  Min-Contention = conflict-count * conflict duration

Unassignable
task T6

C1 C2

T1
est st ft lft

T2

T3

T4

T5

General Task Swap Procedure
•  Given an unassignable task t to insert into the

schedule,
1.  Identify where conflicts with that task exist.
2.  Retract 1 or more tasks in the conflicted areas to

free up capacity
3.  Schedule task t, and mark it as “seen.”
4.  Re-schedule the retracted tasks.
5.  If all retracted tasks cannot be re-scheduled,

recurse on them, most constrained first.
6.  If all tasks have been tested (seen) and some

remain unassignable, backtrack to original state.

Application to AMC Domain
•  Original Results: Real-world

data sets from AMC Airlift
mission scheduling domain
(982 missions, 3251 tasks, 12
AirWings)
–  overall 42% of initially

unassignable missions
successfully integrated

Average Number of Unassignables

0
5

10
15
20
25
30
35
40
45
50

10% 20% 30% 40% 50%

Problem Set

Begin
Random
Min-contention
Min-conflicts
Max-flexibility

•  More Recent Work:
–  order of magnitude speedup resulting from

incorporation of better pruning techniques
–  additional 20% improvement via use of iterated

stochastic search

Generalized Task Swap
[Rubinstein, Smith, Barbulescu 2012]

•  Extension to operate with
arbitrary task networks

•  Application to dynamic
dial-a-ride problems

0	

5	

10	

15	

20	

25	

#	
 	

Infeasible	

	
 Instances	

Number	
 of	
 instances	
 with	
 unscheduled	
 requests	

Comparison	
 with	
 TS	
 and	
 CP	
 (Berbeglia	
 et	
 al.,	
 2011)	

None	

EST	

Most-­‐
constrained	

D1	

D1	

D1	

D1	

D2	
 D2	

D2	

D2	

D3	

D3	

D3	

D3	

D4	

D4	

D4	

D5	

D5	

D5	

D5	

0	

5	

10	

15	

20	

25	

30	

35	

Original	
 90%	
 85%	
 75%	

Unscheduled	

Requests	

Problem	
 Set	

GTS	
 versus	
 Base	
 Search	
 Procedure	
 for	
 Five	
 Days	

of	
 Real	
 Access	
 Data	

BaseSearch	

GTS	

Results:	

•  Comparable	
 performance	
 to	
 state	

of	
 the	
 art	
 solvers	

•  >	
 50%	
 reducTon	
 in	
 unschedulable	

requests	
 over	
 baseline	
 scheduler	
 at	

ACCESS	
 TransportaTon	
 Systems	

Outline of Talk
•  Incremental Constraint-based Solution

Generators
•  Adding Optimizing Search Procedures

– Heuristic-Biased Stochastic Sampling
– Task Swap

•  Generating Resilient Schedules
– Hedging Against Temporal Uncertainty
– Probabilistic Analysis of Deterministic

Schedules
•  Current Focus

Hedging Against the Possibility of
Unexpected Task Behavior

Complementary Perspective: Build schedules that
retain flexibility and can absorb some amount of
unpredictability in execution

• task execution windows instead of precise times
• resource options instead of precise assignments
• process redundancy to increase likelihood of success

 	

Task	
 2	

R1	

 Task	
 1	

Task	
 2	

R1	

 Task	
 1	

Basic Approach: Partial-order scheduling procedures
!

Partial Order Schedules
•  Sequence activities that are competing for the

same resources and let start and end times float

time	

R1! OP2,1! OP1,2! OP2,1! OP1,2!

time	

OP1,2!

OP2,1!

R1!

Slack	
 between	
 two	
 ac^vi^es	

Characterizing Schedule Robustness

•  Fluidity: average slack in the schedule

•  Flexibility: average nbr. of ordered activities

100
)1(
|),(),(|
×

−××

−
=∑ ≠lh

aaaa

NNH
esdsedrb hllh

(Cesta	
 et	
 al.	
 ‘98)	

∑ ∑
=

<×
= −

=
N

i

N

djidij
j NN

flex
1

0
:1)1(

1

Precedence	
 between	
 two	
 ac^vi^es	

(Aloulou	
 &	
 Portmann	
 ‘03)	

Basic Constraint-Posting Cycle

Time	
 feasible	
 task	
 network	

Impose	

Capacity	

Constraint	

Peak	
 1	

C	

Peak	
 2	

Resource	

Leveling	

Task 2

Task 1

Peak	
 1	

C	

Peak2	

Peak	
 2	

	

Constraint	

Propaga^on	
 	

C	

Deadline	
 27	

Task 2

Task 1 Time	
 feasible	
 task	
 network	

Building Robust Schedules:
A Counter-Intuitive Result

[Policella, Smith, Cesta, Oddi - 2004]

•  Envelope-based approach can produce more fluid
solutions but inefficient and generally ineffective

•  Introduction of heuristic bias improves ability to find
solutions but degrades fluidity

•  ESTAC solution procedure generally dominates	
 	
 	

Envelope-­‐based	

commitment	

(EBA)!

EST	
 solu^on	
 +	

generaliza^on	

(ESTAC)	

ESTAC: Earliest Start Time Analysis
with Chaining

Two Step process
1.  Generate a fixed-time

solution using earliest
start time profile

2.  Transform solution into
a partial order schedule
(POS) through chaining

Some Theoretical Properties

•  Chaining step is makespan, tardiness
preserving

•  No loss in generality in focusing on
Chaining Form POSs

Searching for
Robust Schedules

[Policella, Cesta, Oddi, Smith - 2004]

•  Search in the space of Chaining Form
solutions
–  Iterated application of stochastic chaining

procedure
–  Robustness metric as objective criterion
–  Incorporation of chaining heuristics

C=4	
 C=4	

A	
 Chaining	
 Form	
 POS! A	
 Beder	
 Chaining	
 Form	
 POS!

Chaining Heuristics
•  Avoid synchronization points: Put activities requiring

multiple resource units on common chains

•  Allocate synergistically with problem constraints:
Put activities that are already ordered on the same chain

C=4	

Which	
 resource	
 units?	

C=4	

Where?	

Results

•  Experimentation on Resource Constrained
Project Scheduling Problem (RCPSP)
Benchmarks previously solved by basic
chaining procedure

•  Improvement in robustness on both metrics:
–  90% for Flexibility
–  18% for Fluidity (where basic procedure already

produces good results)
•  Incorporation of chaining heuristics speeds

up search process

Schedule Strengthening
through Uncertainty Analysis

[Hiatt, Zimmerman, Smith, Simmons 2009]
•  Issue: How to take advantage of knowledge about

uncertainty
–  Reasoning with explicit models of uncertainty enables

(expected) optimal solutions, but do not scale well
–  Deterministic (flexible times) scheduling is much more

scalable but associated controllability models are overly
conservative

•  Basic Approach:
–  Construct partial order (flexible) schedule that maximizes

quality under deterministic modeling assumptions
–  Use explicit analysis of uncertainty to identify weak points and

take schedule strengthening actions

Strengthening Deterministic
Schedules

•  Assumptions:
–  Probability distributions associated with task durations

and outcomes (payoff or “quality” accrued)
–  Tasks not completed by their deadline fail

•  Possible strengthening actions:
–  Substitute tasks with lower failure likelihoods and/or

shorter durations
–  Schedule redundant back-up tasks to increase

probability of some level of success
•  Goal: Boost likelihood that the quality projected by the

deterministic schedule will be accrued during execution

Probabilistic Analysis of
Deterministic Schedules (PADS)
•  Compute for each task, the probability of

failing (achieving zero quality)
•  For each task with non-zero probability,

compute expected quality loss if it fails
•  In order of expected quality loss, attempt

to strengthen tasks
•  Only keep strengthening actions that

increase the schedule’s expected quality

Probabilistic Analysis (PADS)
Example

TaskGroup

EnsureSafety RestorePower
Deadline: 125

SweepPowerPlant
Qual: 15

Dur: 14 (50%), 16 (50%)
Owner: Agent A

RestoreFullPower
Qual: 5

Dur: 10 (100%)
Owner: Agent B

enables

ProvideTempPower
Qual: 4

Dur: 6 (50%), 8 (50%)
Owner: Agent A or B

Agent A’s
schedule:

SPP (15)
t=100

Agent B’s
schedule:

RFP (10) enables

114 (50%), 116 (50%)

124 (50%), 126 (50%)

sum

max

37

Probabilistic Analysis (PADS)
Example

Agent A’s
schedule:

SPP (15)
t=100

Agent B’s
schedule:

RFP (10) enables

114 (50%), 116 (50%)

124 (50%), 126 (50%)

EQ: 17.5

EQ: 2.5 EQ: 15

TaskGroup

EnsureSafety RestorePower
Deadline: 125

SweepPowerPlant
Qual: 15

Dur: 14 (50%), 16 (50%)
Owner: Agent A

RestoreFullPower
Qual: 5

Dur: 10 (100%)
Owner: Agent B

enables

ProvideTempPower
Qual: 4

Dur: 6 (50%), 8 (50%)
Owner: Agent A or B

sum

EQ: 15 EQ: 2.5 max

38

Schedule Strengthening
Example

Agent A’s
schedule:

t=100

Agent B’s
schedule:

120 (25%), 122 (50%),
124 (25%) PTP (7)

EQ: 17.5 19

EQ: 2.5 4 EQ: 15

EQ: 15 EQ: 4

enables 124 (50%), 126 (50%)

114 (50%), 116
(50%) SPP (15)

RFP (10)

TaskGroup

EnsureSafety RestorePower
Deadline: 125

SweepPowerPlant
Qual: 15

Dur: 14 (50%), 16 (50%)
Owner: Agent A

RestoreFullPower
Qual: 5

Dur: 10 (100%)
Owner: Agent B

enables

ProvideTempPower
Qual: 4

Dur: 6 (50%), 8 (50%)
Owner: Agent A or B

sum

max EQ: 2.5

39

Executing Strengthened
Schedules

!"#$%&'()%$*(+%$#$*&,-.%)#/%$(&

•! 01/.2)%3&%4%567%$%88&19&8()%$*(+%$#$*&

8()2(%*#%8&

•! :;&.)1<=%/8&9)1/&(+%&>+28%&??&%72=@261$&(%8(&

8@#(%&19&ABC>B&011)3#$2(1)8&.)1*)2/&!"#$%&'("

D;& :;& :E&

F
&%
-%
5@
(2
<
=%
&

/
%
(+
1
3
8&

G&:;;& D& H& ;&

:;;IJ;;& :& K& ;&

J;DIH;;& ;& E& ;&

L&H;;& ;& ;& :&

D&

!"#$%&'()*+#,-.+#'(./#'#0)

-$/#0%1#2)

3)

4)

456)

453)

457)

458)

459)

45:)

45;)

45<)

45=)

6)

6) 3) 7) 8) 9) :) ;) <) =) 64)66)63)67)68)69)6:)6;)6<)6=)34)

!
"
#
$!
%
#
&'
$(
'
(
$)
(
*
&(
+&
,
#
-.
&

/
*
(
0
*
&1
2
!
34
.5
&#
!
$*
#
6
&

'$(,3#7&

>'>&?1)2$/#0%1#) 2.+#'(./#'#0)2$/#0%1#)

•  Simulated schedule
execution under 2 starting
conditions:
•  Initial deterministic

schedule
•  Strengthened schedule

•  No rescheduling allowed
during execution (with
basic conflict resolution on)

•  Results:
•  Strengthened schedules

earned on average 36%
more quality (p < 0.01)

Summary
•  Scheduling in dynamic and uncertain domains

requires a balance of pro-active and reactive
decision-making
–  In multi-actor settings, the need for incremental

change and solution stability has implications for the
approach taken to optimization

–  Pro-active consideration of uncertainty can reduce the
burden of execution-time schedule management

•  Constraint-based planning and scheduling
models support both of these complementary
perspectives

Current Focus

•  Distributed coordination and optimization
Frameworks
– Adaptive Traffic Signal Control
– Automated Manufacturing
– Task Allocation in Distributed Sensor

Networks
•  Learning task models and constraints
•  Scheduling to maximize resilience to

constraint violations

Thanks to My Collaborators in
this Work

Laura Barbulescu, Marcel Becker, Amedeo
Cesta, Vince Cicirello, Laura Hiatt, David

Hildum, Larry Kramer, Angelo Oddi, Nicola
Policella, Ricardo Rasconi, Zack Rubinstein,

Reid Simmons, Terry Zimmerman

END

