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Intelligent Coordination and 
Logistics Laboratory 

 

–  Adaptive traffic signal 
control [Traffic21, Heinz] 

The Robotics Institute, Carnegie Mellon University 
Stephen F. Smith, Research Professor and Director 

–  Mixed-Initiative Transportation Planning 
     [AFRL - USTRANSCOM] 

–  Dynamic, Real-Time 
Routing of Paratransit 

Vehicles [ATWIC] 

Focus: Scalable, execution-driven technologies for planning, 
scheduling and coordination 
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–  Multi-Robot Coordination for 
Aircraft Assembly [Boeing] 

−  Distributed management of joint 
plans for disaster response [DARPA] 



Execution-Driven Planning 
and Scheduling Technologies 

•  Organized around principle of “optimization in context” 
–  A plan/schedule is always in place and executing 
–  Continual integration of new demands, new information, new 

constraints, new results (coming from users, other agents, 
execution system) 

–  Continual refinement of task/domain model 
 •  Some key attributes: 

− Decision-making in pace with 
execution 

− Plans that account for and 
hedge against uncertainty 

−  Incremental change and 
solution stability  

	
  



The AMC Allocator: 
Advanced Scheduling for the USAF Air Mobility Command 

•  Problem: Day-to-day allocation 
of aircraft & crews to airlift, tanker 
missions 

•  Characteristics 
– Large scale: 1,000s of missions; 

100s of assets 
– Continuous, dynamic stream of 

mission requirements 

•  Core Technology: Incremental, 
constraint-based search 
–  integration of new requirements into the 

schedule to minimize deadhead travel time 
– Controlled reallocation of existing missions 

to maximize resource usage 
– Extended iterative search to further 

optimize if time permits 

•  Status: Embedded in AMC’s 
operational planning system 

Carnegie Mellon	
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AMC Airlift Allocation Problem 

A!
B!

C!

Wing1!
Wing2!

Decisions:!
•  Assign  resources 

(aircraft, aircrews) 
from Wing1or 
Wing2?!

•  Start at what time?!

•  Mission1:!
pick up 
cargo at A, 
deliver to B, 
then C.!

•  Mission2!
     …!
•  Missionn!

Requests:!

Constraints:!
•  Aircraft, aircrew capacity at different 

locations!
•  positioning/de-positioning time!
•  crew duty day/crew rest!
•  cargo pickup and drop off windows !
•  mission priority!
•  port throughout!

Objective:!
•  Maximize number of  

missions 
flown(oversubscribed 
form)!

•  Minimize total late days!



Outline of Talk 
•  Incremental Constraint-based Solution 

Generators 
•  Adding Optimizing Search Procedures 

– Heuristic-Biased Stochastic Sampling 
– Task Swap 

•  Generating Resilient Schedules 
– Hedging Against Temporal Uncertainty 
– Probabilistic Analysis of Deterministic 

Schedules 
•  Current Focus 
 



Constraint-Based Search 
Models 

Properties: 
– Modeling Generality/Expressiveness 
–  Incremental 
– Compositional 

Active Data Base 
(Current Solution) 

Constraint Propagation 

Commitment 
Strategies/ 
Heuristics 

Conflict 
Handling 

Components:	
  



Scheduling a New Task 
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Option Generation 

•  Core search procedure is configurable to 
support generation of options when all 
constraints cannot be met 
– Treat time windows as relaxable and minimize 

delay 
– Relax capacity constraints and minimize 

number of extra tails/crews needed 
– Bump one or more lower-priority tasks to 

insert new task and minimize disruption 



Configuring A Basic  
Scheduling Search Model 

•  Couple core search 
procedure with a 
prioritization heuristic to 
produce greedy solution 
generator 

• Embed in larger 
optimizing search by 
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Outline of Talk 
•  Incremental Constraint-based Solution 

Generators 
•  Adding Optimizing Search Procedures 

– Heuristic-Biased Stochastic Sampling 
– Task Swap 

•  Generating Resilient Schedules 
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Amplifying the Performance of 
Heuristics via Stochastic Search 
Starting assumption: We have a good search 

heuristic, but its discriminatory power varies from 
context to context 

Issue: How to balance adherence to heuristic 
against possibility of missing better solutions 

Basic Approach:  
–  Randomize the heuristic to enable search in the 

neighborhood of the heuristic’s trajectory 
–  Calibrate the degree of randomness to the level of 

uncertainty in a given decision context 



Heuristic-Biased Stochastic Sampling 
− At each decision point, order the possible choices 

according to a search heuristic.   
− Choose branch of search space randomly but biased 

according to a function of this ordering. 
− Rank-based bias (Bresina 1996): Use rank order and 

choose branch bi with probability: 

− Value-based bias (Cicirello & Smith 2004): Use 
heuristic value assigned and choose branch bi with 
probability: 
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Application to Single Machine 
Weighted Tardiness Problem: 

The Search Space 
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Task Swapping 
[Kramer and Smith 2003,2004,2005] 

Controlled schedule revision to accommodate 
additional tasks without relaxing constraints 

Motivation:  
–  Incremental, priority-based scheduling can result in 

fragmented resource usage, but  
–  Re-allocation is disruptive and should be minimized 

Basic Approach 
–  Temporarily relax priority constraint 
–  Conduct repair-based search around the “footprint” of 

an unassignable task t’s feasible execution window 
–  If all tasks displaced to accommodate t cannot be 

feasibly reinserted, Undo 



An Example 

Unassignable task, T1 

T2 

  T5 

T4 

T6 

T8 T7 

T9 

T12 

T10 

T11 

T15 T13 

CapR=7 

T14 

T3 

R!

T2 Assigned task, T1 

  T5 

T4 

T6 

T8 T7 

T9 

T12 

T10 

T11 

T15 T13 

CapR=7 

T14 

T3 

R 

Re-scheduled task T2 

Un-scheduled task T2 

CapR=7 

R 



Retraction Heuristics 

•  Max-Flexibility = task-duration/feasible-window-size 
•  Min-Conflicts = count intervals that are at-capacity which 

conflict with a task’s feasible window. 
•  Min-Contention = conflict-count * conflict duration 

Unassignable 
task T6 

C1 C2 

T1 
est st ft lft 

T2 

T3 

T4 

T5 



General Task Swap Procedure 
•  Given an unassignable task t to insert into the 

schedule, 
1.  Identify where conflicts with that task exist. 
2.  Retract 1 or more tasks in the conflicted areas to 

free up capacity 
3.  Schedule task t, and mark it as “seen.” 
4.  Re-schedule the retracted tasks. 
5.  If all retracted tasks cannot be re-scheduled, 

recurse on them, most constrained first. 
6.  If all tasks have been tested (seen) and some 

remain  unassignable, backtrack to original state. 



Application to AMC Domain 
•  Original Results: Real-world 

data sets from AMC Airlift 
mission scheduling domain 
(982 missions, 3251 tasks, 12 
AirWings) 
–  overall 42% of initially 

unassignable missions 
successfully integrated 

Average Number of Unassignables

0
5

10
15
20
25
30
35
40
45
50

10% 20% 30% 40% 50%

Problem Set

Begin
Random 
Min-contention 
Min-conflicts 
Max-flexibility 

•  More Recent Work:  
–  order of magnitude speedup resulting from 

incorporation of better pruning techniques 
–  additional 20% improvement via use of iterated 

stochastic search 



Generalized Task Swap 
[Rubinstein, Smith, Barbulescu 2012] 

•  Extension to operate with 
arbitrary task networks 

•  Application to dynamic 
dial-a-ride problems 
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Hedging Against the Possibility of 
Unexpected Task Behavior 

Complementary Perspective: Build schedules that 
retain flexibility and can absorb some amount of 
unpredictability in execution 

• task execution windows instead of precise times 
• resource options instead of precise assignments 
• process redundancy to increase likelihood of success 
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Basic Approach: Partial-order scheduling procedures 
!



Partial Order Schedules 
•  Sequence activities that are competing for the 

same resources and let start and end times float 

time	


R1! OP2,1! OP1,2! OP2,1! OP1,2!

time	



OP1,2!

OP2,1!

R1!



Slack	
  between	
  two	
  ac^vi^es	
  

Characterizing Schedule Robustness 

•  Fluidity: average slack in the schedule 

•  Flexibility: average nbr. of ordered activities 
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Basic Constraint-Posting Cycle 

Time	
  feasible	
  task	
  network	
  

Impose	
  
Capacity	
  
Constraint	
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  1	
  
C	
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  2	
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  2	
  

	
  
Constraint	
  
Propaga^on	
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   27	
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Task 1 Time	
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Building Robust Schedules:  
A Counter-Intuitive Result 

[Policella, Smith, Cesta, Oddi - 2004] 

•  Envelope-based approach can produce more fluid 
solutions but inefficient and generally ineffective 

•  Introduction of heuristic bias improves ability to find 
solutions but degrades fluidity 

•  ESTAC solution procedure generally dominates	
  	
  	
  

Envelope-­‐based	
  
commitment	
  

(EBA)!

EST	
  solu^on	
  +	
  
generaliza^on	
  

(ESTAC)	
  



ESTAC: Earliest Start Time Analysis 
with Chaining 

Two Step process   
1.  Generate a fixed-time 

solution using earliest  
start time profile 

2.  Transform solution into 
a partial order schedule 
(POS) through chaining 

 



Some Theoretical Properties 

•  Chaining step is makespan, tardiness 
preserving 

•  No loss in generality in focusing on 
Chaining Form POSs 



Searching for  
Robust Schedules 

[Policella, Cesta, Oddi, Smith - 2004] 

•  Search in the space of Chaining Form 
solutions 
–  Iterated application of stochastic chaining 

procedure 
–  Robustness metric as objective criterion 
–  Incorporation of chaining heuristics 

C=4	
   C=4	
  

A	
  Chaining	
  Form	
  POS! A	
  Beder	
  Chaining	
  Form	
  POS!



Chaining Heuristics 
•  Avoid synchronization points: Put activities requiring 

multiple resource units on common chains 

•  Allocate synergistically with problem constraints: 
Put activities that are already ordered on the same chain 

C=4	
  

Which	
  resource	
  units?	
  

C=4	
  

Where?	
  



Results 

•  Experimentation on Resource Constrained 
Project Scheduling Problem (RCPSP) 
Benchmarks previously solved by basic 
chaining procedure 

•  Improvement in robustness on both metrics: 
–  90% for Flexibility 
–  18% for Fluidity (where basic procedure already 

produces good results) 
•  Incorporation of chaining heuristics speeds 

up search process 



Schedule Strengthening 
through Uncertainty Analysis 

[Hiatt, Zimmerman, Smith, Simmons 2009] 
•  Issue: How to take advantage of knowledge about 

uncertainty 
–  Reasoning with explicit models of uncertainty enables 

(expected) optimal solutions, but do not scale well 
–  Deterministic (flexible times) scheduling is much more 

scalable but associated controllability models are overly 
conservative 

•  Basic Approach: 
–  Construct partial order (flexible) schedule that maximizes 

quality under deterministic modeling assumptions 
–  Use explicit analysis of uncertainty to identify weak points and 

take schedule strengthening actions 



Strengthening Deterministic 
Schedules 

•  Assumptions: 
–  Probability distributions associated with task durations 

and outcomes (payoff or “quality” accrued) 
–  Tasks not completed by their deadline fail 

•  Possible strengthening actions: 
–  Substitute tasks with lower failure likelihoods and/or 

shorter durations 
–  Schedule redundant back-up tasks to increase 

probability of some level of success 
•  Goal: Boost likelihood that the quality projected by the 

deterministic schedule will be accrued during execution 



Probabilistic Analysis of 
Deterministic Schedules (PADS) 
•  Compute for each task, the probability of 

failing (achieving zero quality) 
•  For each task with non-zero probability, 

compute expected quality loss if it fails 
•  In order of expected quality loss, attempt 

to strengthen tasks 
•  Only keep strengthening actions that 

increase the schedule’s expected quality 



Probabilistic Analysis (PADS) 
Example 

TaskGroup 

EnsureSafety RestorePower 
Deadline: 125 

SweepPowerPlant 
Qual: 15 

Dur: 14 (50%), 16 (50%) 
Owner: Agent A  

RestoreFullPower 
Qual: 5 

Dur: 10 (100%) 
Owner: Agent B 

enables 

ProvideTempPower 
Qual: 4 

Dur: 6 (50%), 8 (50%) 
Owner: Agent A or B 

Agent A’s 
schedule: 

SPP (15) 
t=100 

Agent B’s 
schedule: 

RFP (10) enables 

114 (50%), 116 (50%) 

124 (50%), 126 (50%) 

sum 

max 
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Probabilistic Analysis (PADS) 
Example 

Agent A’s 
schedule: 

SPP (15) 
t=100 

Agent B’s 
schedule: 

RFP (10) enables 

114 (50%), 116 (50%) 

124 (50%), 126 (50%) 

EQ: 17.5 

EQ: 2.5 EQ: 15 

TaskGroup 

EnsureSafety RestorePower 
Deadline: 125 

SweepPowerPlant 
Qual: 15 

Dur: 14 (50%), 16 (50%) 
Owner: Agent A  

RestoreFullPower 
Qual: 5 

Dur: 10 (100%) 
Owner: Agent B 

enables 

ProvideTempPower 
Qual: 4 

Dur: 6 (50%), 8 (50%) 
Owner: Agent A or B 

sum 

EQ: 15 EQ: 2.5 max 

38 



Schedule Strengthening 
Example 

Agent A’s 
schedule: 

t=100 

Agent B’s 
schedule: 

120 (25%), 122 (50%), 
124 (25%) PTP (7) 

EQ: 17.5  19 

EQ: 2.5 4 EQ: 15 

EQ: 15 EQ: 4 

enables 124 (50%), 126 (50%) 

114 (50%), 116 
(50%) SPP (15) 

RFP (10) 

TaskGroup 

EnsureSafety RestorePower 
Deadline: 125 

SweepPowerPlant 
Qual: 15 

Dur: 14 (50%), 16 (50%) 
Owner: Agent A  

RestoreFullPower 
Qual: 5 

Dur: 10 (100%) 
Owner: Agent B 

enables 

ProvideTempPower 
Qual: 4 

Dur: 6 (50%), 8 (50%) 
Owner: Agent A or B 

sum 

max EQ: 2.5 

39 



Executing Strengthened 
Schedules 
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•  Simulated schedule 
execution under 2 starting 
conditions: 
•  Initial deterministic 

schedule 
•  Strengthened schedule 

•  No rescheduling allowed 
during execution (with 
basic conflict resolution on) 

•  Results: 
•  Strengthened schedules 

earned on average 36% 
more quality (p < 0.01) 



Summary 
•  Scheduling in dynamic and uncertain domains 

requires a balance of pro-active and reactive 
decision-making 
–  In multi-actor settings, the need for incremental 

change and solution stability has implications for the 
approach taken to optimization 

–  Pro-active consideration of uncertainty can reduce the 
burden of execution-time schedule management 

•  Constraint-based planning and scheduling 
models support both of these complementary 
perspectives 



Current Focus 

•  Distributed coordination and optimization 
Frameworks 
– Adaptive Traffic Signal Control 
– Automated Manufacturing 
– Task Allocation in Distributed Sensor 

Networks 
•  Learning task models and constraints 
•  Scheduling to maximize resilience to 

constraint violations 
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