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Introduction

* From drill holes to mines: discretize the model into 3D
volumes (mining blocks), create models for the metal
content, material types... for each block in the orebody




Traditional Orebody Models:

Some Limitations and Shortcomings

Conventional models DO NOT account for uncertainty....

Estimation methods try to
. approximate some average
5% ? grade value ... not the actual

‘ one




Mining Decisions

Attributes of Interest

2016
Au grade Oxide Leach
2017
CO; grade

2018 Autoclave

SS grade

SS/CO; ratio
Rec(Autoclave) Waste Dump

Rec(Leach)

Tonnage

Traditional production scheduling methodologies neglect uncertainty and variability!

Source: M.Godoy, Newmont Gold, SME 2016



Conventional Mine Planning Workflow

Orebody Modelling

Estimated Orebody Model

Can a single estimated model
represent a mineral deposit?

(Grade variability, uncertainty)

Mine Design &
Production Scheduling

Deterministic Design
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Estimation vs Simulation does it Matter?

Estimation Simulation
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Estimation vs Simulation does it Matter?

A recall from 1998
Testing the conventional plan against simulated scenarios ...

Simulated
Realizations — Risk Analysis

== Forecast from

< ) Estimated Deposit

T 15 | 1

[

X

s 10

<

> Most probable NPV is A$16.5M,
z 25% less than the conventional

(deterministic) estimate

0 5 10 15 20 25 30 35 40 45 50
Pit Shells (Time)

why?  Estimation methods misrepresent volumes of different
grade ranges ... and more ...



PUBLISHED SUNDAY, OCTOBER 8, 2000, IN THE SAN JOSE MERCURY NEWS

l‘\ O »0 4/.
¢ V‘Lfv\}L- :1 Pe

‘-u
&

'Y

©2000 DR. SAM SAVAGE

he Flaw of Averages

IF YOU COUNT ON THE STOCK MARKET'S AVERAGE RETURN
TO SUPPORT YOU IN RETIREMENT, YOU COULD WIND UP PENNILESS

By Sam Savage
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Conventional / Deterministic Workflows

80% of Failures Due to Geological Risk
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Stochastic Workflows

§ Stochastic < Stochastic Mine Design & § Financial &

Orebody Modelling Production Scheduling Production Forecasts

. Probabilistic Reporting
Simulated Orebody Models Stochastic Design & Production Schedule

Sim. 1 [
s=1 Sl
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Cumulative NPV MS

Sim. S Bz ER)
s=S .

A better NPV is always obtained
through the use of stochastic
mine planning in comparison

with conventional methods

A single mine design and
production schedule accounting
for uncertainty and managing
risk

A set of simulations describe

geological uncertainty and
grade variability




Simultaneous Optimization

Mines

Customers & Markets ...

Processing streams

Market

I
I
Spot I
I
I
I
I

Waste dumps.... Tailings... Rehab

| One Stochastic Mathematical Programming
: Formulation for the
| whole Mineral Value Chain




Mining Complexes - Mineral Value Chains

A mining complex may be seen as an integrated business starting from the
extraction of materials to a set of sellable products delivered to various
customers and/or spot market

Simultaneous stochastic optimization of the mining complex/value chain

mMme A —>| —— Tailings 1 I&‘ Slag 1
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Zz %; Stockpile A4 ™,
Mi ne Port Metal Exchange
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Mine C
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Simultaneous: a. One optimization model to capitalize on synergies,

b. $ value of products sold no $ value of individual blocks



Simultaneous Stochastic Optimization

« Adaptable two-stage stochastic integer programming model

with CAPEX:
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Attributes of int{

 Revenues from
metal sale

* Mining, process
stockpiling cost

Tonnage (% Capacity)
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1. Risk reduction.
2. Risk deferral (geological risk discounting).




Mining Complexes with Risk Management

Production schedule Sulfides - Mine 1 Sulfides - Mine 2 No Economic
* Metal tonnes_::> £t Metal tonnes|/\_ Values for Mining
« Total tonnes |\_] £ .. Total tonnes L Blocks Used
| |
Destination policies i /
Processing Stream A Decisions, Blending,

. Total metal GEOMET

. Total tonnes All topics related to
materials mined move
here

Processing streams
. Head grade

1
2
3
4. Recovery
5
6

— - Throughput E Uncertainty can be
%T2 . Metal rec0\|/ered ——— | quantified at any stage
\ Z L 4
Customer #1 (Contract) Customer #2 Cash flows are
1. Metal 1. Metal calculated here
Product Value > Metal value > Metal value using products

The life-of-asset(s) strategic plan is the output of the optimization



A Gold Mining Complex

—> Stockpiles

_ UGM | |Other Sources
Pit 1 o
: >  Autoclave
Blending is
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Sources of Supply Uncertainty

Other Sources

Pit 1 A B
“‘ oy
Stochastic simulations Aut(;c‘:lave g
s &F 0 oo
Value
. k. T4 -L'" . Historical data
Simulated Sulphide Stockpiles - : Mill
Pit 2
— Leach

17
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Practical Stochastic Schedule - Example

Full View Bench A Bench B

Ll

Colours represent production years

> @

Stochastic vs conventional schedules:
Substantially different parts of the pit are mined at the same year

Practical
Stochastic
plan

The Mine’s

Practical
Conventional
plan




Stochastic Optimization in a Mining Complex

Cumulative NPV

-} 14%

1 2 sYear 4 5

Cumulative gold recovered

1 2 3 4
Year

Mine’s schedule =« =« =

P50 ======- P90 of Stochastic schedule

Acid

3Year 5

Stochastic

Limit



Environmental & social impacts

* Waste management and
Rehabillitation

 Acid rock drainage

 Result of oxidation of
sulfidic rock

 Decreased environmental
footprint

Total Waste
Production

/ o

5 10 15 20
Mining Period

GWaste Tonnes

@8 Reduced footprint
% New dump extents

20



Waste Characterization and Rehabilitation

Electric Concentration
Conductivity [H*]
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Joint Supply and Market Uncertainty

Net Present Value

Mineral
Deposits

16
Period Commodity Price

" Markets
P10/P90 ---+ P50 — 1400 =

Joint Supply and Market Uncertainty Supply Uncertainty

———— 4

0 1)

1000

800



Optimization with Metaheuristics

« Computationally prohibitive optimization models,
IN THE PAST.

Mine 1 Mine 2 Mine 3
400,000 blocks 50,000 blocks 250,000 blocks
400 destination decisions/y 40 destination decisions/y 100 destination decisions/y
30 years 10 years 25 years
30 simulations 15 simulations 20 simulations

B T | T

- — == =
Stockpile

Mill 1 Mill 2 Waste

* 9,000 joint scenarios

* 18,750,000 scheduling decision variables
* 62,500 destination policy variables

* 540,000 processing stream variables



New Research - Al based Optimization Solutions

For Mineral Value Chain optimization formulations

High level strategy to select the
heuristic to apply at a given
iteration during optimization

(Reinforcement Learning)

Neural
Network

Decomposition
algorithm

24



Mining Complexes - Mineral Value Chains

The Self-learning Mining Complex
and

Updating Short-term Production
Plans

and .....

25



New Information - Mining Complexes

Sensor Informatlon

« Sensor generated information m

* Crushers
« Conveyor belt

* Processing plant

 Blasthole data

* New exploration data

Exploratlon Blasthole
26



New Information: Workflow

Q -—
01 G .
New L"¢¥New Information
Information Material extracted Material hauled
Deleterious elements  Material leached
CO”eCted ' Shovel performance Leach performance
: Material loaded  Crusher performance
=3 5 Truck performance  Material processed
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3 .
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Update
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Mining Complex Models

u‘ Crusher 1 ¥
D‘ Crusher 2

Processing Stream Fleet Assignment

"
1“.“
12 3

Period Mill
Extraction Sequence Destination Policy

i |Update Short-term
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The Self-Learning Mining Complex

Digital Information Database BIG
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Updating Uncertainty Models

Stochastic
Simulations

S

-
.

» b
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¥

Information
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01 3 -
8;;?6"New Information

Material extracted

Shovel performance
Material loaded
Truck performance
Material crushed

Material hauled

Deleterious elements  Material leached

Leach performance

Updated

Crusher performance StOChaStIC

Material processed
Plant performance

Simulations

|

Ensemble Kalman
Filter

1. Prediction Step
AZ'(x)

2. Correction Step
Zt+1(x) — Zt(x)
+K(l+w" — AZ' (%))
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New Research - Updating Uncertainty Models

Feedback
Continuous Learning

— | Artificial Intelligence
:%_—|Convent|onal |
=¥ Information (Al) P X
o ¥ (Actor-Critic o BN
S| .4 ‘?‘ Reinforcement Learning) B
© é% S,
=18 - 1. Actor proposes updated value T
-(% . of mineral deposit (Proposal) = Updated
T| 2. Critic evaluates if the Simulations
E ke - proposed aCtIOn IS Sensor Vs Model Prediction
B better/worse (Criticism) ! H i
fof
.. . -
S=lsensor 3. Critic and actor adjust e
e nformation themselves to generate better sensor ol Sensor
proposal and criticism (Learn) Forecasi;




Updating Short-term Production Plan

'?E‘IPerformance of
« € Components

Supply Uncertainty

* Block properties
Block tonnage
Deleterious elements
Material crushed
Material leached
Equipment Uncertainty
« Shovel performance
* Truck performance

* Crusher performance
* Plant performance

* Leach performance

What to
extract

Where to
send

32



Decision Space Complexity

Mining

71

Front 1

Mining

%

Front2 24

%

Mill
Waste
Leach

Mill
Waste
Leach

O Decisions

81
Combination

O Decisions

Decision tree grows exponentially
Solution: Reinforcement Learning using Monte Carlo Tree Search

O
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g14 OOooo--00o00oo
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Reinforcement Learning using MCTS

Deep Neural Network

— L0000 Ooo
FaePerformance of Components

0001

°°°°° Block properties  Shovel performance
Block tonnage Truck performance
Deleterious elements Crusher performance
Material crushed Plant performance
Material leached Leach performance

2 Train

Reinforcement Learning
using MCTS

Monte Carlo Tree Search

(MCTS)
N What to extract
D\Comblnatlon{Where to send

N
o o o e o o S

~ I
Pox qﬁgmmmmmmuu

[
Google... DeepMind
AlphaGo...
\ New algorithms ....

4. Simulation a4



Deep Reinforcement Learning

v
|V v e
w w w M
M M L] M

M - Mill K™ M{—=h [N

W - Waste v (U
L - Leach Pad

Starting Point Starting Point Starting Point Starting Point Starting Point

(OO B aE [ [ [ B ] ] [ i B ] gooto-0hutn [ [ [w Rl w6 ]
State of a
mining poood--oooiy Ooooo-+00000 Ooooo--0o000
complex: s; v

v

~

:; P . . — Coi oV i — (+--d+- ~. . d>. )
v ] ap " VapTs Tap ai " Va,iT,s Cai Qgirs T Cai AaiT,s
st

SESJ;(T) PEP a€PRr SEgJ}(T) iEPUDUM a€Py seSJ;(T) [EPUD a€PpUPy 35




Results — A Copper Mining Complex

L | Waste
Dum

Erusherj’:= == Mill -3
Crusher 2 ==
=SSR M2 = Port
Mine A | Crusher 3 |
. |Crusher 5| "e==" Mill -1

'lﬁrusherii—'“ Oxide =

Leach Pad

| Cathode
Plant
K . Sulphide

Leach Pad
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Parameters

Weekly time scale - 13 weeks of production plan
updated

Supply of materials and equipment uncertainty are
considered

Extraction and destination decisions for each block
Elements considered: Cu, As, Au, Ag, and Mo
25 stochastic simulations for each mine (15 for

training and 10 for testing the performance)

37



Updated Production Plan

Initial Production Plan Updated Production Plan

1IN Weeks T 13 38




Updated Production Plan

Cumulative Cash Flows

Cumulative Cash Flow

9 =~ 100 Cumulative Cash Flow
‘; 140
§ 3 80
; 60
123456 7 8 9 10111213 g 40
Week © 20 |
0
Initial Production Plan PP ek
..... PO Updated Production Plan
== P50
:i:: P10
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Updated Production Plan

Copper Production

Total Copper Mills

_300 .
g 250 -
g 200 )
2
= Total Copper Mills
o _.350
g 2 300 979
5 0 B 250
F 12345678 910111213 2200
Week = 150

. . & 100

Initial Production Plan £ 5
= 01 2 3456 7 8 910111213
IIIII Pgo Week
== P50 Updated Production Plan



New Research - Reinforcement Learning for

Truck Dispatching
* Adapting truck dispatching policies

Cumulative CuT recovered

---- P10 - QL_policy2

m— P50 - QL_policy2

---- P90 - QL_policy2 -
---- P10 - fixed_policy '_‘,_._'_'___
— p50-fixed policy =

---- P90 - fixed_policy ’

- 16%

Quantity Recovered (tons)

Initial Production Plan




Conclusions

» Simultaneous Optimization of a Mining Complex with
Uncertainty (Stochastic)

« Example at a Gold Mining Complex

« Major increase (>10%) in cash flows and gold

Artificial Intelligence — Self-learning for Short-term
Production Plans

« Example at a Copper Mining Complex

« 13% increase in cash flow and 9% in coper from the
updated production plan over 13 weeks

and Fast Updating Framework (<4 min for
updating 13 weeks of production plan)

More to Expect and Much More Research Needéd
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