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Vehicle Routing Problems



4

Basic problem: Traveling Salesman Problem

Find the shortest closed tour that visits each city exactly once.
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QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

http://www.tsp.gatech.edu

71,009 cities
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Milestones

Year Research Team Size of Instance 
1954 G. Dantzig, R. Fulkerson, and S. Johnson 49 cities 
1971 M. Held and R.M. Karp 64 cities 
1975 P.M. Camerini, L. Fratta, and F. Maffioli 67 cities 
1977 M. Grötschel 120 cities 
1980 H. Crowder and M.W. Padberg 318 cities 
1987 M. Padberg and G. Rinaldi 532 cities 
1987 M. Grötschel and O. Holland 666 cities 
1987 M. Padberg and G. Rinaldi 2,392 cities 
1994 D. Applegate, R. Bixby, V. Chvátal, and W. Cook 7,397 cities 
1998 D. Applegate, R. Bixby, V. Chvátal, and W. Cook 13,509 cities 
2001 D. Applegate, R. Bixby, V. Chvátal, and W. Cook 15,112 cities 
2004 D. Applegate, R. Bixby, V. Chvátal, W. Cook, and K. Helsgaun 24,978 cities 

2005 Applegate et al. 85,900 cities

Applegate, Bixby, Chvátal & Cook 
[2007]

Chip design application for AT&T/Bell Labs, solved to optimality in 
136 CPU years (on a 250-node cluster this took around one year)

Current best approach is based on MIP, using specialized Branch & Cut
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China TSP revisited

Tour within 0.024% of optimal [Hung Dinh Nguyen]
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TSP with Time Windows

• Each city must be served within its associated time window

[20,25]
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Adding time windows makes it much harder than pure TSP
• State of the art can handle ~100 cities optimally, sometimes even 

more, depending on instance
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Vehicle Routing

• Find minimum cost tours from single origin (depot) to multiple 
destinations, using multiple (capacitated) trucks.

depot
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Generally even harder than TSP-TW
• We need to partition set of cities, and solve TSP for each subset
• Many variations (split/unsplit demand, pick-up & delivery, ...)
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Solving Vehicle Problems

Typical characteristics
• Large scale (hundreds to thousands of locations)
• Time windows, precedence constraints, ...
• Capacity constraints, stacking restrictions, ...

Potential benefits of Constraint Programming
• Natural problem representation
• Specific algorithms to handle combinatorial restrictions 

(resource capacities, time windows, ...)
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Constraint Programming
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Constraint Programming Overview

Constraint Programming is a way of modeling and solving 
combinatorial optimization problems

• CP combines techniques from artificial intelligence, logic 
programming, and operations research

• There exist several industrial solvers (e.g., ILOG CP Solver, 
Eclipse, Xpress-Kalis, Comet), and academic solvers (e.g., 
Gecode, Choco, Minion)

• Many industrial applications, e.g.,
Gate allocation at the Hong Kong airport
Container scheduling at Port of Singapore
Timetabling of Dutch Railways (INFORMS Edelman-award)
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Comparison with Integer Programming

Integer Linear Programming
(branch-and-bound/branch-and-cut)

• systematic search
• at each search state, solve 

continuous relaxation of problem 
(expensive)

• add cuts to reduce search space

• domains are intervals

very suitable for optimization 
problems

Constraint Programming

• systematic search
• at each search state, reason on 

individual constraints (cheap)

• filter variable domains to reduce 
search space

• domains contain holes

very suitable for highly 
combinatorial problems, e.g., 
scheduling, timetabling
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Modeling examples

• variables range over finite or continuous domain:
v ∈ {a,b,c,d},  start ∈ {0,1,2,3,4,5},  z ∈ [2.18, 4.33],  S ∈ [ {b,c}, 
{a,b,c,d,e} ]

• algebraic expressions:
x3(y2 – z) ≥ 25 + x2∙max(x,y,z)

• variables as subscripts:
y = cost[x] (here y and x are variables, ‘cost’ is an array of parameters)

• logical relations in which constraints can be mixed:
((x < y) OR (y < z)) ⇒ (c = min(x,y))

• ‘global’ constraints (a.k.a. symbolic constraints):
alldifferent(x1,x2, ...,xn)
UnaryResource( [start1,..., startn], [duration1,...,durationn] )
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Example:
variables/domains x1 ∈ {1,2}, x2 ∈ {0,1,2,3}, x3 ∈ {2,3}
constraints  x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3)

CP Solving
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Example:
variables/domains x1 ∈ {1}, x2 ∈ {0,1}, x3 ∈ {2,3}
constraints  x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3)



17

3

1

x3

2 3 2

0

CP Solving 

x1

x2

1 2

x3

3

1

x3

x2

Example:
variables/domains x1 ∈ {2}, x2 ∈ {0,1}, x3 ∈ {2,3}
constraints  x1 > x2

x1 + x2 = x3

alldifferent(x1,x2,x3)
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CP Model for TSP-TW
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TSP: basic structure

Most CP models use a ‘path’ representation of the TSP:
• Split the depot into two nodes: node 0 and n+1
• Let nodes 1 up to n represent the cities we have to visit
• Task: find Hamiltonian path (from 0 to n+1)

Variables:
nexti  represents the city to visit after city i (i=0,1,...,n)

with domain {1,...,n+1}

Constraint:
Path(next0,...,nextn+1)

additional redundant constraint: alldifferent(next0,...,nextn)

[Caseau & Laburthe, 1997], [Pesant et al., 1998], [Focacci et al., 1999, 2002]



20

TSP: distances

Distances are represented by a ‘transition’ function
Tij represents the distance between each pair of cities i,j

Variables:
z represents total length of the path, with domain {0, UB}
costi  represents travel time from city i to nexti

Constraints:
z = ∑i costi

(nexti = j) ⇒ (costi = Tij)

Alternative: embed cost structure in Path constraint (see later)
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TSP with Time Windows

Each city i has associated time window [ai, bi] in which the service 
must be started

In addition, we assume that each city i has service time duri

Variables:
starti represents time at which service starts in city i
costi represents travel time from city i to nexti

Constraints:
(nexti = j) ⇒ (starti + duri + costi ≤ startj)
ai ≤ startj ≤ bi

Note: The non-overlapping constraints can be grouped together in a 
UnaryResource constraint
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From TSP to machine scheduling

• Vehicle corresponds to ‘machine’
• Visiting a city corresponds to ‘activity’

D

1

2

3

4

5

D time

• Sequence-dependent set-up times
Executing task j after task i induces set-up time Tij (distance)

• Minimize ‘makespan’
• Activities cannot overlap (UnaryResource constraint)

Powerful filtering algorithms (e.g., Edge-finding)

makespan

T35
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Resource constraints

disjunctions versus UnaryResource constraint
Example:

machine must execute three tasks T1, T2, T3

duration of each task is 3 time units

Filtering task: find earliest start time and latest end time for each task

T1

T2

61

81

disjunctions:
compare two tasks at a time

Ti before Tj

or
Tj before Ti

T3

1 2 3 4 5 7 8 9 10
time

6

101



24

Resource constraints

disjunctions versus UnaryResource constraint
Example:

machine must execute three tasks T1, T2, T3

duration of each task is 3 time units

Filtering task: find earliest start time and latest end time for each task

T1

T2

61

81

T3

1 2 3 4 5 7 8 9 10
time

6

101

UnaryResource:
compare tasks simultaneously

filtering:
T3 must start after time 6
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Resource constraints

disjunctions versus UnaryResource constraint
Example:

machine must execute three tasks T1, T2, T3

duration of each task is 3 time units

Filtering task: find earliest start time and latest end time for each task

T1

T2

61

81

T3

1 2 3 4 5 7 8 9 10
time

6

107

UnaryResource:
compare tasks simultaneously

filtering:
T2 must end before time 8



26

Resource constraints

disjunctions versus UnaryResource constraint
Example:

machine must execute three tasks T1, T2, T3

duration of each task is 3 time units

Filtering task: find earliest start time and latest end time for each task

T1

T2

61

71

T3

1 2 3 4 5 7 8 9 10
time

6

107

UnaryResource:
compare tasks simultaneously

edge-finder algorithm 
computes these bounds in 

O(n log n) time for n tasks
[Carlier & Pinson, 1994]

[Vilim, 2004]

Algorithms for sequence-dependent setup times
are more involved
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A hybrid approach

Replace the Path constraint by an ‘optimization constraint’

WeightedPath(next, T, z)

This constraint encapsulates a linear programming relaxation, and 
performs domain filtering based on optimization criteria (e.g., 
reduced-cost based filtering)

[Focacci et al., 1999, 2002]
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Assignment Problem as LP relaxation 

Mapping between CP and LP model
nexti = j ⇔ yij = 1
nexti ≠ j ⇔ yij = 0

For the TSP, we apply the Assignment Problem relaxation

• Specialized O(n3) algorithm
• O(n2) incremental algorithm
• Reduced costs come for free
• Subtour-elimination constraints

are added to objective in 
‘Lagrangian’ way to strenghten
relaxation

min z =
j∈V
∑ cij yij

i∈V
∑

yij
i∈V
∑ =1,∀j ∈ V

yij
j∈V
∑ =1,∀i ∈ V

0 ≤ yij ≤1,∀i, j ∈ V

s.t.
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Guide search by reduced costs

Idea: apply reduced costs to guide the search and improve bound
• reduced cost represents marginal cost increase if variable 

becomes part of solution
• variable with low reduced cost is ‘more likely’ to be part of 

optimal solution
• group together promising values and branch on subdomain

good domain G(nexti) = { j | yij has reduced cost ≤ U }
bad domain B(nexti) = { j | yij has reduced cost > U }

solve relaxation

nexti∈ G(nexti) nexti∈ B(nexti)
[Milano & v.H., 2002]
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Apply Limited Discrepancy Search 

branch on
G(nexti) and B(nexti)

...

discrepancy 0:
all in G(nexti)

discrepancy 1:
all but one in G(nexti),
one in B(nexti)

discrepancy n:
all in B(nexti)

...

solve relaxation:
lower bound LB and

reduced costs

we can improve LB!

Bound improvement [Milano & v.H., 2002]:
• order all minimum reduced costs corresponding to bad domains: r1, r2, r3, ... 
• for all subproblems with discrepancy k,   LB + ∑i=1..k ri is a valid lower bound
• comes ‘for free’ (just order once)

LDS: Harvey & Ginsberg [1995]
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Computational results

19.122k21.125kgr48

70.724k149.819krbg042a

reduced cost-based searchplain search

4.21k180.419krbg050a

8.24k36.85krbg035a.2

0.93655.213krbg034a
81.1156kn/an/abrazil58

1.930012.615khk48

time (s)backtrackstime (s)backtracksinstance

Traveling Salesman Problem (with Time Windows)
• ‘plain’ search: hybrid optimization by [Focacci, Lodi, & Milano, 1999, 2002]
• reduced cost-based search: [Milano & v.H., 2002]
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Computational results
Dyn.Prog. Branch&Cut CP+LP
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Summary on TSP-TW

Benefits of CP model
• Natural problem representation
• When time windows (and other side constraints) are present, CP 

can be very effective
e.g., powerful scheduling algorithms for UnaryResource constraint

• Apply ‘optimization constraint’ to capture and exploit LP 
relaxation

reduced cost-based filtering
guide the search, improve bound using LDS

Comparison to other exact approaches
• No clear winner for TSP-TW; specific to problem instance
• But CP is certainly among state of the art
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Application: Pittsburgh Food Bank
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QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

• A food bank is a non-profit organization 
that collects and distributes food to needy 
people through agencies

• More than 200 Food Banks in the U.S.

Demand

Food Banks

Pittsburgh Food Bank warehouse
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Greater Pittsburgh Community Food Bank

Our focus: Three Rivers Table Program
• Collect excess food from restaurants, supermarkets,...
• Distribute to agencies (e.g., soup kitchens, shelters), for same-

day consumption

FB
+7

-5

+6

+4
-7

-5 +11

+3

-8-6

Goal: minimize total route length
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VRP with side constraints

Food Bank problem combines three sub-problems
• Partition the locations into subsets to be served by the trucks
• For each partition, solve an optimal TSP
• For each partition, locations must be ordered such that truck 

capacity is not exceeded nor ‘deceeded’
Other aspects
• Some locations must be served within time window (few)
• Trucks can operate maximum 8 hours per day
• Three trucks available per day
• Demand and supply is not splittable
• Problem size: 130 locations
We wish to find optimal weekly schedule
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Literature review

General Pickup and 
Delivery Problems

Transportation 
from/to depot

Transportation
between customers

Paired Unpaired

1-PDTSP
1-PDVRP

TSP-TW
VRP-TW
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Related work

1-PDTSP (one commodity)
• Hernandez-Perez & Salazar-Gonzalez [2004]

No time windows
Branch-and-cut algorithm to solve instances with 40 customers
Two heuristic approaches that can handle instances up to 500 customers

• Hernandez-Perez & Salazar-Gonzalez [2007]
Branch-and-cut algorithm improved with new inequalities that can solve 
instances up to 100 customers

• Hernandez-Perez et al. [2008]
Hybrid algorithm that combines GRASP and VND metaheuristics

1-PDVRP (one commodity)

• Dror, Fortin, & Roucairol [1998]

Different approaches (MIP, CP, LS) are applied to 9 locations, with 
splittable supply and demand



40

Our approach

Heuristic methods
• Apply Constraint-Based Local Search
• How close to optimality can we get?
• Can we improve the current schedule?

Exact methods
• Apply MIP and CP solvers
• What is the maximum problem size that can be solved 

optimally?

For MIP, we implemented a flow-based model, and a delayed column-generation 
procedure. The MIP approach was only able to find solutions to very small 
problem instances. Therefore we omit the MIP results in this talk.

[Gunes & v.H., 2009]
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Constraint Programming Model

Model depends on CP Solver that is applied
• Most CP solvers (e.g., ILOG Solver 6.6, Comet, Gecode) have 

special semantics for scheduling problems, such as activities and 
resources

• ILOG CP Optimizer (replaces ILOG Solver 6.6) no longer
contains these semantics; instead ‘interval variables’ are used

In our work, we applied both ILOG Solver 6.6 and CP Optimizer, 
but we present here the ‘classical’ CP model
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Constraint Programming Model (cont’d)

Model is similar to TSP-TW 
• Vehicles are alternative resources

Type 1: UnaryResource to model time constraints (i.e., non-overlap)
Type 2: Reservoir to model capacity w.r.t. pickup and delivery

• Visiting a location is an activity
Each activity has start variable, end variable, and fixed duration
Each activity can deplete or replenish a reservoir

• Distances are modeled as ‘transition times’ between activities

In this way, the problem can be viewed as a scheduling problem on 
multiple machines with sequence-dependent setup times (where 
we want to minimize the makespan)
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CP Model: Some more details (single truck)

IloReservoir truckReservoir(ReservoirCapacity, 0);
truckReservoir.setLevelMax(0, TimeHorizon, ReservoirCapacity);

IloUnaryResource truckTime();
IloTransitionTime T(truckTime, Distances);

vector<IloActivity> visit;
visit = vector<IloActivity>(N);

for (int i=0; i<N; i++) {
visit[i].requires(truckTime);
if (supply[i] > 0)

visit[i].produces(truckReservoir, supply[i]);
else
visit[i].consumes(truckReservoir, -1*supply[i]);

}
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Constraint-Based Local Search

• Use ‘constraint programming’ model to formulate the problem
• Apply built-in neighborhoods and penalty functions to define 

Local Search algorithm
typically based on variable and constraint semantics
library is extendible to define own neighborhoods/functions

• In principle, model could be solved either by CP, or LS
in practice, this is not always feasible, because different 
variable/constraint types may be used for CP and LS

ILOG Dispatcher (part of ILOG Solver 6.6) is a library that applies 
constraint-based local search specifically to vehicle routing 
problems
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CP model in Dispatcher

• Nodes
coordinates of the locations

• Vehicles
dimensions: time, distance, and weight (load)
UnaryResource constraint w.r.t. time (automatically defined)
‘Capacity’ constraint w.r.t. load (automatically defined)

• Visits
location
quantity picked up (+) or delivered (-)
time window
other (problem-specific) constraints

Note: Dispatcher uses Euclidean distances (computed from coordinates). We 
convert the solutions back to our exact distances when comparing to CP.
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Dispatcher Model: Some more details

class RoutingModel {
...
IloDimension2   _time; 
IloDimension2   _distance; 
IloDimension1   _weight;
...

}

IloNode node( <read coordinates from file> );

IloVisit visit(node);
visit.getTransitVar(_weight) == Supply);
minTime <= visit.getCumulVar(_time) <= maxTime;
visit.getCumulVar(_weight) >= 0);

IloVehicle vehicle(firstNode, lastNode);
vehicle.setCapacity(_weight, Capacity);
vehicle.setCost(_distance);
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Two-Phase solution approach

• First phase: Generate a feasible solution, using either one of
Savings heuristic
Sweep heuristic 
Nearest-to-depot heuristic
Nearest addition heuristic
Insertion heuristic
Enumeration heuristic 

• Second phase: Improve the first solution using local search 
methods

IloTwoOpt,  IloOrOpt, IloRelocate, IloCross and IloExchange 
neighborhoods
We apply all these local search methods in sequence and within each 
local search method we take the first legal cost-decreasing move 
encountered

Of course, we can also start 
from current schedule
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IloTwoOpt: two arcs in a route are cut and reconnected

IloOrOpt: segments of visits in the same route are relocated

Local Search Methods - IntraRoute 
Neighborhoods 
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IloRelocate: a visit is inserted in another route

IloCross: the ends of two routes are exchanged  

IloExchange: two visits of two different routes swap places 

Local Search Methods - InterRoute 
Neighborhoods 
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Experimental Results

• Supply data: we have detailed information for each location
• Demand data: precise amount is unknown

We approximate the demand based on the population served (known), 
scaled by the total supply

• Distances: ‘exact’ (Google Maps / MS Mappoint)
We assume 15 minutes processing time per location

Small instances
• Subset of food bank problem, e.g., one day of current schedule
• Number of trucks depends on the number of locations. 

Typically, we can serve up to 15~20 locations per truck.
Larger instances
• Consider multiple days simultaneously (entire week contains 

130 locations)
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Small instances - Exact versus heuristic

• Small instances, single vehicle
• Reported are cost savings with respect to current schedule

Number of 
locations 

Exact CP
(Scheduler)

Heuristic CBLS
(Dispatcher)

13 12% 12%

14 15% 14%

15 7% 6%

16 5% 3%

18 16% 15%

• ILOG Scheduler can solve these instances optimally, within several minutes.
• ILOG Dispatcher finds solutions close to optimality within one second
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Larger instances

• Multiple trucks, several days (up to entire week)
• Reported are cost savings with respect to current schedule

9

4

2

Number of 
trucks

Number of 
locations 

Exact CP
(Scheduler)

Heuristic CBLS
(Dispatcher)

30 - 4%

60 - 8%

130 - 10%

• Scheduler is not able to find even a feasible solution to problems with more 
than 20 locations, and 2 trucks

• Dispatcher finds a solution with 10% cost savings for the entire week 
within one second

• Recent experiments indicate that CP Optimizer (using advanced search) 
can find good solutions to large problems. For an instance on 62 locations 
and 4 trucks it found a solution with 16% cost savings.
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Summary for VRP/Food Bank

Benefit of CP model
• Natural problem representation, comes with built-in objects for 

these problem types
• For Local Search: Can add other constraints without changing 

the search procedures

Computational comparison
• Constraint Programming can be applied to optimally solve small 

to medium-sized 1-PDVRPs of this kind
potential improvements: more advanced search strategies; hybrid MIP/CP 
approaches

• (Constraint-Based) Local Search provides solutions of good 
quality very quickly for large-scale problems
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Conclusion 

• For pure TSP, state of the art can handle thousands of locations 
optimally

• When side constraints are added (such as time windows), state 
of the art can only handle up to 100 locations optimally

• VRPs (with side constraints) can be even harder

Benefits of CP models for TSP-TW, VRP, and variants
• Natural problem description
• Powerful algorithms for combinatorial constraints
• Competitive approach (state of the art in some cases)

Yet, method of choice highly depends on problem characteristics!
Mixed optimization/scheduling problem


