

ExxonMobil

1

Multiperiod Blend Scheduling Problem

Juan Pablo Ruiz Ignacio E. Grossmann

Department of Chemical Engineering Center for Advanced Process Decision-making Carnegie Mellon University Pittsburgh, PA 15213

Motivation

- Large cost savings can be achieved if the correct blending decisions are taken.
- Models highly nonconvex \rightarrow global optimization techniques required.
- Efficient solution methods for large scale systems remains as a challenge...

Goal: Develop tools and strategies aiming at improving the efficiency of the solution methods for the global optimization of the multiperiod blend scheduling problem

General Problem Topology

The general case of a blending problem can be represented schematically as follows

Remarks:

Examples of **supply nodes**:

- tanks loaded by ships
- feedstocks downstream the CDU

Examples of **delivery nodes**:

- tanks feeding the CDU
- tanks delivering to final customers

Main Model Assumptions

- The quality of each stream/inventory is constant for a given period.
- A tank can receive or deliver in a given period of time but not both.
- Supply tanks keep a constant quality.
- **Delivery** tanks keep the **quality** within a given **range**.
- Streams entering delivery tanks should satisfy a quality condition.

Work lines - Summary

Alternative Formulations

- Proposed formulations given in the space of properties and total flows and in the space of individual property flows
- Reduced the number of bilinear terms by using GDP formulations
- Explored the use of **redundant constraints** to improve the relaxations

Solution Methods

Proposed a Logic Based Outer Approximation method to find local solutions

Proposed a Lagrangian Decomposition method to find global solutions

Main Focus

Novel Relaxation Strategies

Proposed the use of new relaxations based on vector space properties

Alternative Formulations

Alternative Formulations **Different space formulations**

Splitter

Formulation I Specific Property – Total Flow

$$\sum_{\substack{j'\\jj' \in E}} F_{jj't} = TF_{jt}^{out}, S_{qj}$$

(

Formulation II
Total Property FlowNonconvex
$$f_{q \ j' j t} = \xi_{j j' t} T f_{q j t}^{out}$$
 $\sum_{(j j') \in E} \xi_{j j' t} = 1$

Formulation I and II are *equivalent* but with *different relaxations* !

Alternative Formulations

Redundant Constraints*

The **total property flow** to the delivery site is constrained by an upper and lower bound. This information is lost when $CF_{qjj't-1}^{B} = C_{qjt-1}^{B}F_{qjj't-1}^{B}$ is relaxed.

 $C_{qj'}^{L}F_{jj't} - M(1 - x_{jj't}) \le CF_{qjj't-1}^{B} \qquad \forall q \in Q, j \in J^{B}, j' \in J^{D}, (jj') \in E, t \in T$ $CF_{qjj't-1}^{B} \le C_{qj'}^{U}F_{jj't} + M(1 - x_{jj't}) \qquad \forall q \in Q, j \in J^{B}, j' \in J^{D}, (jj') \in E, t \in T$

For any two properties q and q' (in any stream or inventory) the ratio between the **total property flow** of q to q' is the same as the ratio between **specific property value**. This is lost when the problem is relaxed.

$$CF_{qjj't-1}^{B}C_{q'jt-1}^{B} = CF_{q'jj't-1}^{B}C_{qjt-1}^{B} \quad \forall q, q' \in Q, j \in J^{B}, j' \in (J^{D} \cup J^{B}), (jj') \in E, t \in T$$

$$CI_{qjt-1}^{B}C_{q'jt-1}^{B} = CI_{q'jt-1}^{B}C_{qjt-1}^{B} \quad \forall q, q' \in Q, j \in J^{B}, t \in T$$

The **property balance** around each "splitter" should be held. This is lost when the bilinear terms are relaxed.

$$\sum_{\substack{j'\\(j'j)\in E}} f_{q\,j'jt} = Tf_{qjt}^{out} \quad \forall q \in Q, j \in J^B, t \in T$$

* Ruiz and Grossmann, 2010 "Using redundancy to strengthen the relaxation of nonconvex MINLPs" To appear in Computers and Chemical Engineering Journal

Alternative Formulations

Generalized Disjunctive Programming

By exploiting the underlying logic structure of the problem, a reduction of the number of bilinear terms can be achieved

Logic Based Outer-Approximation

Outline of the Logic Based OA

No guaranty a global solution!

LGDP Master:

- Relax bilinear terms using McCormick envelopes.
- Solve MIP using the Hull Reformulation.

NLP Subproblem:

- Fix boolean variables from master problem.
- Eliminate not active disjuncts
- Solve small NLP formulation

Iteration Step:

- Generate linear cuts on solution point of NLP subproblem.

Lagrangian decomposition

Solution Methods Lagrangian decomposition (Algorithm)

Outline of the Lagrangian decomposition method

uo represents the dual multipliers; *BestLB*, the best lower bound; *BestUB*, the best upper bound and k, the iter counter

Each *subproblem (LRi)* from the decomposition is solved

A lower bound for the original nonconvex problem can be obtained by adding up the solution of each (LRi) (i.e. LB_{LRi})

Any local optimization algorithm can be used to find an UB. (e.g. **The logic based outer-approximation** applied on the GDP formulation)

Solution Methods
Illustrative Example

The **implementation** of the **Lagrangian Decomposition** method has been tested in the following simple case

Network Description:

- Two Supply, Intermediate and Delivery nodes
- Two properties transported
- Three time periods

Numerical Results

Lagrangian Decomposition

Representation of the nonzero flow streams in the different periods for the global optimal solution

Global Solution (Z = 14.22) (verified with BARON)

Remarks

- Forced to stop after **20 iterations** (no improvement observed).
- Finds the global solution (Z = 14.22)
- The existence of the **duality gap is due to the nonconvex** nature of the problem

Structure

Solution Methods

Generation of Real-world Instances

		Lower Bound	Upper Bound
Nodes	J ^p , J ^B , J ^D	4	10
Properties	Q	4	10
Periods	Т	40	100
Edges	Е	40% of all possible edges	100% of all possible edges
	P _{jt}	0	100
	D _{jt}	0	100
	S ^P _{qj}	0	1
	$\mathrm{S^{B0}_{qj}}$	0	1
	$\mathbf{S^L}_{qj,}\mathbf{S^U}_{qj}$	0	1
	$I^{L}_{j,}I^{U}_{j,}I^{0}_{j}$	0	100
	$F^{L}_{jj}, F^{U}_{jj},$	0	100

Bounds on Variables

This table was used to generate random instances

Solution Methods

Observations

Numerical tests using Lagrangian Relaxation with temporal decomposition

Finding Local Solutions Outer Approximation Method

Remarks

- Reducing the number of bilinear terms in $NLP(y_i)$ leads to a more robust formulation
- Having **good bounds** for the variables is of main importance to find **tight relaxations**

Finding Local Solutions Tighter bounds for variables (I)

Observation

If **two streams** are **mixed** together, the **concentration** of any given component in the mixture is always **higher/lower** than the **minimum/maximum** concentration in the streams

Mathematical Representation

$$C_{qit} \ge \min_{(i,j)\in E}(C_{qjt-1}) \quad \forall q, i, t$$

$$C_{qit} \leq \max_{(i,j)\in E}(C_{qjt-1}) \quad \forall q, i, t$$

How can we use it to infer bounds for the compositions?

Finding Local Solutions

Tighter bounds for variables (II)

Lower Bounds

Upper Bounds

$$-C_{qit}^{LO} = C_{qi0} \quad \forall q, i, t = 1$$

$$-C_{qit}^{UP} = C_{qi0} \quad \forall q, i, t = 1$$

$$-C_{qit}^{UP} = C_{qi0} \quad \forall q, i, t = 1$$

$$-C_{qit}^{UP} \leq \max_{(i,j)\in E} (C_{qjt-1}^{UP}) \quad \forall q, i, t > 1$$

Illustrative Example

	t=0		t=1		t=2	
	LO	UP	LO	UP	LO	UP
Node 1	0.2	0.2	0.2	0.2	0.2	0.2
Node 2	0.3	0.3	0.3	0.3	0.3	0.3
Node 3	0.4	0.4	0.2	0.4	0.2	0.4
Node 4	0.5	0.5	0.4	0.5	0.2	0.5

Lower and upper bound tightening can be achieved in the preprocessing step

Finding Local Solutions

Tighter bounds for variables (III)

Performance Analysis

Predicted lower bounds at first MASTER problem

	Global Optimum	Using original bounds	Using inferred bounds
Instance 1	-2900	-4958	-4083
Instance 2	-10900	-20958	-14650

Remark

Improvements in the bounds prediction can be obtained if lower/upper bounds of **flows and inventory** levels are **considered**

$$\begin{split} C_{qit} \geq \min(\frac{I_{qit-1}C_{qit-1} + \sum_{(i,j)\in E} F_{jit}C_{qjt-1}}{I_{qit}}) \geq \frac{I_{qit-1}^{LO}C_{qit-1}^{LO} + \sum_{(i,j)\in E} F_{jit}C_{qjt-1}}{I_{qit}} \qquad \forall q, i, t \\ C_{qit} \leq \max(\frac{I_{qit-1}C_{qit-1} + \sum_{(i,j)\in E} F_{jit}C_{qjt-1}}{I_{qit}}) \leq \frac{I_{qit-1}^{UP}C_{qit-1}^{UP} + \sum_{(i,j)\in E} F_{jit}C_{qjt-1}}{I_{qit}} \qquad \forall q, i, t \end{split}$$

Finding Local Solutions Reduced number of bilinear terms

Traditional MINLP Formulation

One general state

$$C_{qjt}^{B}I_{jt} = C_{qjt-1}^{B}I_{jt-1} + \sum_{\substack{j' \in J^{P} \\ (j'j) \in \mathbb{Z}}} C_{qj'}^{P}F_{j'jt} + \sum_{\substack{j' \in J^{B} \\ (j'j) \in \mathbb{Z}}} C_{qjt-1'}^{B}F_{j'jt} - \sum_{\substack{j' \\ (j'j) \in \mathbb{Z}}} C_{qjt-1'}^{B}F_{j'jt} \quad \forall q \in Q, j \in J^{B}, t \in T$$

Proposed GDP Formulation

Two states

$$\begin{bmatrix} Y_{jt} \\ C_{qjt}^{B} I_{jt} = C_{qjt-1}^{B} I_{jt-1} + \sum_{\substack{j' \in J^{P} \\ (j'j) \in \mathcal{B}}} C_{qj'}^{P} F_{j'jt} + \\ \sum_{\substack{j' \in J^{B} \\ (j'j) \in \mathcal{B}}} C_{qjt-1'}^{B} F_{j'jt} \quad \forall q \in Q, j \in J^{B}, t \in T \end{bmatrix} \lor \begin{bmatrix} \neg Y_{jt} \\ C_{qjt}^{B} = C_{qjt-1'}^{B} \quad \forall q \in Q, j \in J^{B}, t \in T \end{bmatrix}$$

By exploiting the underlying logic structure of the problem, a reduction of the number of bilinear terms can be achieved

Finding Local Solutions

Numerical Results

Performance Analysis

- 11 random instances
- Outer approximation solver **DICOPT(GAMS)**
- Three different formulations (all using McCormick envelopes):
 - **1-** Original MINLP
 - 2- Formulation with reduced number of bilinear terms
 - **3** Formulation with reduced number of bilinear terms plus bound tightening

- Forced to stop after 10 iterations or 30 minutes

Remarks

- Formulation (2) and (3) found feasible solutions in more than 70% of instances
- Formulation (3) outperformed Formulation (2) in 20% of the instances
- Formulation (1) led to a large number of "false" infeasible problems

Solution Methods Solution of LRi sub-problems Minimal cut-edge with fixed nodes

Incidence	<u>Objective:</u> Minimize the edges that cross the boundaries of each subset				
Matrix min	$\sum_{iik} (A_{ij}) (y_{ik} - z_{ijk})$	If $y_{ik} = 1$ then the node i below to			
s.t.	$\sum_{k} y_{ik} = 1 \qquad \forall i \qquad Number of nodes \\ in disjoint subsets$	the subset k			
	$\sum_{i} y_{ik} = \alpha_{k} \forall k$				
	$1 - y_{ik} - y_{jk} + z_{ijk} \ge 0 \forall ijk$				
	$y_{ik} \ge z_{ijk} \forall ijk \qquad \longrightarrow$	$z_{ijk} = y_{ik} y_{jk}$			
	$y_{jk} \geq z_{ijk} \forall ijk$				
	$\sum_{ij} z_{ijk} = \alpha_k^2 \forall k \longrightarrow cut!$				

Solution of LRi sub-problems

Minimal cut-edge with fixed nodes example

Dualized constraints necessary: <u>3(n+1)</u> (*n: number of properties considered*)

Solution Methods Solution of LR_i sub-problems Numerical Results

-Baron takes 347 seconds (~6min) to solve the problem with a solution of 20954.8

-The spatial decomposition solves the problem in **1 iteration**:

MIP separation problem:

5 seconds

TOTAL:	(<u>sol: 20954.8</u>)	9.5 seconds
Sub-problem 2: Sub-problem 3:	(sol: 11451.8) (sol: 3407.0)	1.4 seconds 1.5 seconds
Sub-problem 1:	(sol: 6096.0)	1.6 seconds

Remarks:

Even though it is not expected for general problems to converge in one iteration, even with 15 iterations, the time necessary would be ~1 min

Novel Relaxations

Novel Relaxation Strategies

Vector space properties to strengthen the relaxation

 $F_{in}P_{in}^{j} \longrightarrow F_{on}P_{on}^{j}$

 $\longrightarrow F_{on} P_{on}^{j}$ Main building block of a process network

Algebraic Representation

$$\begin{split} \sum_{i \in I_n} (F_{in} P_{in}^j) - F_{on} P_{in}^j &= 0 \\ \sum_{i \in I_n} F_{in} - F_{on} &= 0 \end{split}$$

Vectorial Representation

 $v_{F_n} \perp v_E$ $v_{P_n^j} \perp v_{F_n} \rightarrow Vector Space$ Interaction Exposed $v_{F_n} = (F_1, F_2, \dots, F_{|I_n|}, F_o)$ $v_E = (1, 1, \dots, 1, -1)$ $v_{P_n^j} = (P_1^j, P_2^j, \dots, P_{|I_n|}^j, -P_o^j)$

Exploit interaction to develop cuts (3-D Case)

$$\begin{array}{c} v_{F_{n}} \perp v_{E} \\ \Rightarrow \quad v_{F} \times v_{P} = \alpha v_{F} \\ v_{P_{n}^{j}} \perp v_{F_{n}} \\ \alpha = \frac{\|v_{P}\| \sqrt{3} \sin \theta}{\|v_{F}\|} , 0 \leq \theta \leq 2\pi \end{array}$$

$$\begin{array}{c} \beta_{i} \leq \alpha F_{i}^{up} + \alpha^{io}F_{i} - \alpha^{io}F_{i}^{up} \\ \beta_{i} \leq \alpha F_{i}^{io} + \alpha^{up}F_{i} - \alpha^{up}F_{i}^{io} \\ \beta_{i} \geq \alpha F_{i}^{up} + \alpha^{up}F_{i} - \alpha^{up}F_{i}^{up} \\ \beta_{i} \geq \alpha F_{i}^{io} + \alpha^{io}F_{i} - \alpha^{io}F_{i}^{io} \\ \beta_{i} \geq \alpha F_{i}^{io} + \alpha^{io}F_{i} - \alpha^{io}F_{i}^{io} \end{array}$$

Novel Relaxation Strategies Numerical Results*

 Table – Comparison of the performance of proposed approach with traditional relaxations

		Traditional Approach			Proposed Approach		
Instance	GO	LB	Nodes	Time(s)	LB	Nodes	Time(s)
1	82.78	78.25	11	20	81.6	4	9
2	151.96	142.10	35	30	144.30	17	17
3	5.19	4.86	87	109	5.05	6	22
4	9.79	8.22	650	542	8.78	365	325
5	12.60	12.48	5	19	12.60	1	17
6	-264.01	-574.5	877	596	-530.0	460	321
7	-1308.0	-1985.3	97	77	-1930.0	63	56

All problems were solved using a Pentium(R) CPU 3.4 GHz and 1GB RAM

Pooling problems!

*Ruiz J.P. and Grossmann I.E. 2010, "Exploiting Vector Space Properties for the Global Optimization of Process Networks", Optimization Letters

Remarks

- Proposed formulations given in the space of properties and total flows and in the space of individual property flows
- Reduced the number of bilinear terms by using GDP formulations
- Explored the use of **redundant constraints** to improve the relaxations
- Proposed a Logic Based Outer Approximation method to find local solutions
- Proposed a Lagrangian Decomposition method to find global solutions
- Proposed the use of new relaxations based on vector space properties

Future Work

- Implement **spatial decomposition** of the sub-problems within the **global** optimization **framework**.
- Add cuts to strengthen relaxation for LR (from Vector Space Analysis?)