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Motivation
- Large cost savings can be achieved if the correct blending decisions are taken.g g g

- Models highly nonconvex →  global optimization techniques required.

- Efficient solution methods for large scale systems remains as a challenge…

C
D
U

FCC

Blending Upstream
the CDU
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Goal: Develop tools and strategies aiming at improving the efficiency
of the solution methods for the global optimization of the multiperiod blend

the CDU the CDU
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of the solution methods for the global optimization of the multiperiod blend
scheduling problem



General Problem Topology

The general case of a blending problem can be represented schematically as follows

Remarks:

Examples of  supply nodes: 
- tanks loaded by ships 
- feedstocks downstream the CDU

Supply Intermediate Delivery

Examples of delivery nodes: 
- tanks feeding the CDU 
- tanks delivering to final customers

Supply Intermediate Delivery

Main Model Assumptions

- The quality of each stream/inventory is constant for a given period.
- A tank can receive or deliver in a given period of time but not both.
- Supply tanks keep a constant quality.
- Delivery tanks keep the quality within a given range.
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- Streams entering delivery tanks should satisfy a quality condition.



Work lines - Summary

Alternative FormulationsAlternative Formulations

► Proposed formulations given in the space of properties and total flows
and in the space of individual property flows

► Reduced the number of bilinear terms by using GDP formulations

► Explored the use of redundant constraints to improve the relaxations

Solution Methods

► Proposed a Logic Based Outer Approximation method to find local
l isolutions

► Proposed a Lagrangian Decomposition method to find global solutions

Main Focus
Novel Relaxation Strategies

► Proposed the use of new relaxations based on vector space properties

Main Focus
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AlternativeAlternative 
Formulations
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Alternative Formulations
Different space formulations
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Alternative Formulations

Redundant Constraints*
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The total property flow to the delivery site is constrained by an upper
and lower bound. This information is lost when                           is relaxed.B
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the total property flow of q to q’ is the same as the ratio between specific 
property value. This is lost when the problem  is relaxed.
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The property balance around each “splitter” should be held. This is lost 
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when the bilinear terms are relaxed.
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To appear in Computers and Chemical Engineering Journal



Alternative Formulations

Generalized Disjunctive Programming

Traditional MINLP Formulation One general 
state

Proposed GDP Formulation Two states
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By exploiting the underlying logic structure of the problem, a reduction of the
number of bilinear terms can be achieved



S l ti M th dSolution Methods
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Solution Methods

Logic Based Outer-Approximation

Outline of the Logic Based OA LGDP Master:
- Relax bilinear terms using McCormick 

Master Problem
(Linear GDP)

envelopes. 
- Solve MIP using the Hull Reformulation.

NLP Subproblem

NLP Subproblem:
- Fix boolean variables from master problem.
- Eliminate not active disjuncts NLP Subproblem - Solve small NLP formulation

Iteration Step:
li l i i- Generate linear cuts on solution point

of NLP subproblem.No guaranty a 
global solution!
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Lagrangian decomposition
Solution Methods
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Duplicating inventory and composition
variables and dualizing the correspondent

equalities leads to a temporal decomposable
structure
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Lagrangian decomposition
(Algorithm)

Solution Methods

Initialize uo, BestLB,
BestUB, k

Outline of the Lagrangian decomposition method
uo represents the dual multipliers; 
BestLB, the best lower bound;  
BestUB, the best upper bound and k, 
the iter counter 

Solve LR1 Solve LR2 Solve LRN
Each subproblem (LRi) from the    
decomposition is solved

A lower bound for the original
LB = ∑ LBLRi

If BestLB < LB
B tLB LB

A lower bound for the original 
nonconvex problem can be obtained 
by adding up the solution of each 
(LRi) (i.e. LBLRi)

BestLB = LB

Obtain UB
(Solve local MINLP)

Any local optimization algorithm can
be used to find an UB. (e.g. The logic 
based outer-approximation applied

Update Multipliers
ut+1=ut – t*Error
t = a / (b + k)

If BestUB-BestLB < 
or k = maxiter – 1 

STOP 

based outer approximation applied 
on the GDP formulation)
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t = a / (b + k)

k=k+1



Illustrative Example
Solution Methods

The implementation of the Lagrangian Decomposition method has been tested
in the following simple case

3 51

Supply Intermediate Delivery

I l t Fl d P t O l Fl d P

42 6

Inlet Flows and Property
Values are fixed

Outlet Flows and Property
Values are fixed

Topology
(allowed connections)

Network Description:
- Two Supply, Intermediate and Delivery nodes
- Two properties transported
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Two properties transported
- Three time periods



Lagrangian Decomposition

Numerical Results
Solution Methods

Lagrangian Decomposition

Representation of the nonzero flow streams in the different periods
for the global optimal solution

Period 1 Period 2 Period 3

Gl b l S l ti (Z 14 22) ( ifi d ith BARON)

F d t t ft 20 it ti ( i t b d) 40
45

Global Solution (Z = 14.22) (verified with BARON)

Remarks

- Forced to stop after 20 iterations (no improvement observed). 
- Finds the global solution (Z = 14.22)
- The existence of the duality gap is due to the nonconvex

nature of the problem 
0
5

10
15
20
25
30
35

LB
/U

B
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Generation of Real-world Instances
Solution Methods

Lower Bound Upper Bound

JP , JB, JD 4 10

Q 4 10

T 40 100

Nodes

Properties

Periods

S
tru

ct
ur

e

E 40% of all possible edges 100% of all possible edges

Pjt 0 100

Djt 0 100

SP 0 1

EdgesS

ds
 o

n
bl

es

SP
qj 0 1

SB0
qj 0 1

SL
qj, SU

qj 0 1

IL
j IU

j I0
j 0 100

B
ou

nd
Va

ria
b

I j, I j, I j 0 100

FL
jj’ , FU

jj’ 0 100

This table was used to generate random instances
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Numerical tests using Lagrangian Relaxation
Observations
Solution Methods

with temporal decomposition

Initialize uo, BestLB,
BestUB, k

Solve LR1 Solve LR2 Solve LRN
1- High computational 

time required in sub-
problems  (> 5min)

LB = ∑ LBLRi

If BestLB < LB
BestLB = LB

p ( )

2- Difficulties to find
local solutions

Obtain UB
(Solve local MINLP)

If BestUB BestLB < 

local solutions

Update Multipliers
ut+1=ut – t*Error
t = a / (b + k)

If BestUB-BestLB < 
or k = maxiter – 1 

STOP How do we tackle these
issues?

Carnegie Mellon
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Finding Local Solutions
Outer Approximation Method

Solution Methods

pp

MASTERLower Bound
The MASTER problem can

be tightened by adding McCormick
C l f th bili

NLP( )

Fix Integer (yj)

Add linearizations 
from solution of

NLP (yj)

U B d

If  MASTER 
infeasible
STOP

If NLP(yj) infeasible

Convex envelopes for the bilinear
terms

NLP(yj)Upper Bound
(yj)

remove yj

Bounds of
If (Up Bound -Lo Bound)

is less than 
STOP

Bounds of 
variables

- Reducing the number of bilinear terms in NLP(yj) leads to a more robust formulation

Remarks

- Having good bounds for the variables is of main importance to find tight relaxations

Carnegie Mellon
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- Having good bounds for the variables is of main importance to find tight relaxations



Finding Local Solutions
Ti ht b d f i bl (I)

Solution Methods

Observation
If two streams are mixed together, the concentration of any given component in 
the mixture is always higher/lower than the minimum/maximum concentration

Tighter bounds for variables (I)

the mixture  is always higher/lower than the minimum/maximum concentration  
in the streams  

i

j

Fijt

C it
tiqCC qjtEjiqit ,,)(min 1),(

 

Mathematical Representation

Cqit

tiqCC qjtEjiqit ,,)(max 1),(
 

How can we use it to infer bounds for the compositions?

Carnegie Mellon

18

How can we use it to infer bounds for the compositions?



Finding Local Solutions
Ti h b d f i bl (II)

Solution Methods

1 tiqCC LO 1 tiqCCUP

Lower Bounds Upper Bounds

Tighter bounds for variables (II)

1,,)(min 1),(
 

tiqCC LO
qjtEji

LO
qit

1,,0  tiqCC qiqit

1,,)(max 1),(
 

tiqCC UP
qjtEji

UP
qit

1,,0  tiqCC qiqit

Illustrative Example

t=0 t=1 t=2
C10=0.2

1

3 4

t=0 t=1 t=2
LO UP LO UP LO UP

Node 1 0.2 0.2 0.2 0.2 0.2 0.2
Node 2 0.3 0.3 0.3 0.3 0.3 0.3
Node 3 0 4 0 4 0 2 0 4 0 2 0 4

C30=0.4

2
Node 3 0.4 0.4 0.2 0.4 0.2 0.4
Node 4 0.5 0.5 0.4 0.5 0.2 0.5

L d b d ti ht i b hi d

C20=0.3

C40=0.5
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Lower and upper bound tightening can be achieved 
in the preprocessing step



Finding Local Solutions
Ti ht b d f i bl (III)

Solution Methods

Tighter bounds for variables (III)
Performance Analysis

Predicted lower bounds at first MASTER problem
2

1 4

3

Global 
Optimum

Using original
bounds

Using inferred
bounds

Instance 1 -2900 -4958 -4083
3 Instance 2 -10900 -20958 -14650

Remark
Improvements in the bounds prediction can be obtained if lower/upper bounds 
of flows and inventory levels are considered
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Finding Local Solutions
Reduced number of bilinear terms

Solution Methods

Traditional MINLP Formulation One general 
state

Proposed GDP Formulation Two states

Carnegie Mellon
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By exploiting the underlying logic structure of the problem, a reduction of the
number of bilinear terms can be achieved



Finding Local Solutions
l

Solution Methods

Numerical ResultsPerformance Analysis

- 11 random instances

- Outer approximation solver DICOPT(GAMS)

- Three different formulations (all using McCormick envelopes):
1- Original MINLP1 Original MINLP 
2- Formulation with reduced number of bilinear terms
3- Formulation with reduced number of bilinear terms  plus bound tightening

- Forced to stop after 10 iterations or 30 minutes

Remarks

Forced to stop after 10 iterations or 30 minutes 

- Formulation (3) outperformed Formulation (2) in 20% of the instances 
- Formulation (1) led to a large number of  “false” infeasible problems

- Formulation (2) and (3) found feasible solutions in more than 70% of instances

Carnegie Mellon
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Solution of LRi sub-problems
Spatial Decomposition

Solution Methods

Initialize uo, BestLB,
BestUB, k

S l LR1 S l LR2 S l LRN
Spatial Decomposition

Solve LR1 Solve LR2 Solve LRN

LB = ∑LBLRn

If BestLB < LB
BestLB = LB

Period N

Obtain UB
(Solve local MINLP) If BestUB-BestLB < 

or k = maxiter – 1 How do we decompose

Update Multipliers
ut+1=ut – t*Error
t = a / (b + k)

or k  maxiter 1 
STOP

p
it spatially?

Carnegie Mellon
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Solution of LRi sub-problems
Minimal cut-edge with fixed nodes

Solution Methods

Incidence

Objective: Minimize the edges that cross the boundaries
of each subset

)(min ijkikij
ijk

zyA 
iyts  1 Number of nodes

Matrix
If yik = 1 then the
node i belongs to 

the subset kiyts
k

ik  1..

ky
i

kik  

Number of nodes
in disjoint subsets

the subset k

ijkzyy ijkjkik  01
ijkzy ijkik  jkikijk yyz jy ijkik

ijkzy ijkjk 

 2

jkikijk yy
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Solution of LRi sub-problems
Minimal cut-edge with fixed nodes example

Solution Methods

Sub-Set 1

g p

Sub-Set 2

S b S t 3Sub-Set 3

Dualized constraints necessary: 3(n+1)

Carnegie Mellon
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Dualized constraints necessary: 3(n+1)
(n: number of properties considered)



Solution of LRi sub-problems
Numerical Results

Solution Methods

-Baron takes 347 seconds (~6min) to solve the problem with a 
solution of 20954.8

-The spatial decomposition solves the problem in 1 iteration:

MIP separation problem: 5 seconds

Sub-problem 1:  (sol: 6096.0)  1.6 seconds
Sub-problem 2:  (sol: 11451.8)  1.4 seconds
Sub-problem 3: (sol: 3407 0) 1 5 secondsSub problem 3:  (sol: 3407.0)  1.5 seconds 

TOTAL: (sol: 20954.8) 9.5 seconds

Remarks:

- Even though it is not expected for general problems to converge in
one iteration even with 15 iterations the time necessary would be

Carnegie Mellon
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one iteration, even with 15 iterations, the time necessary would be
~1 min 



NovelNovel 
Relaxations
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Vector space properties to strengthen 
the relaxation

Novel Relaxation Strategies

j
inin PF j

onon PF Main building block
of a process network

the relaxation 

Algebraic Representation Vectorial Representation

Exploit interaction to develop cuts (3-D Case)

CutsCuts
(for a given

j and n)

Carnegie Mellon
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Numerical Results*
Novel Relaxation Strategies

Proposed ApproachTraditional Approach

Table – Comparison of the performance of proposed approach with traditional relaxations

1717144 303035142 10151 962

9481.6201178.2582.781

Time(s)NodesLBTime(s)NodesLBGOInstance

Proposed ApproachTraditional Approach

17112 6019512 4812 605

3253658.785426508.229.794

2265.05109874.865.193

1717144.303035142.10151.962

17112.6019512.4812.605

321460-530.0596877-574.5-264.016

5663-1930.07797-1985.3-1308.07

All problems were solved using a Pentium(R) CPU 3.4 GHz and 1GB RAM

Pooling problems!
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*Ruiz J.P. and Grossmann I.E. 2010, “Exploiting Vector Space Properties for the Global 
Optimization of Process Networks” , Optimization Letters 



Remarks

► Proposed formulations given in the space of properties and total flows
and in the space of individual property flows

► Reduced the number of bilinear terms by using GDP formulations► Reduced the number of bilinear terms by using GDP formulations

► Proposed a Logic Based Outer Approximation method to find local

► Explored the use of redundant constraints to improve the relaxations

p g pp
solutions

► Proposed a Lagrangian Decomposition method to find global solutions

► Proposed the use of new relaxations based on vector space propertiesp p p p

Future Work

- Implement spatial decomposition of the sub-problems within the global
optimization framework.

- Add cuts to strengthen relaxation for LR (from Vector Space Analysis?)
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