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Motivation

- Large cost savings can be achieved if the correct blending decisions are taken.

- Models highly nonconvex — global optimization techniques required.

- Efficient solution methods for large scale systems remains as a challenge...
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Goal: Develop tools and strategies aiming at improving the efficiency
of the solution methods for the global optimization of the multiperiod blend

scheduling problem
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General Problem Topology

The general case of a blending problem can be represented schematically as follows

Supply Intermediate Delivery

Main Model Assumptions

Remarks:

Examples of supply nodes:
- tanks loaded by ships
- feedstocks downstream the CDU

Examples of delivery nodes:
- tanks feeding the CDU
- tanks delivering to final customers

- The quality of each stream/inventory is constant for a given period.
- A tank can receive or deliver in a given period of time but not both.

- Supply tanks keep a constant quality.

- Delivery tanks keep the quality within a given range.
- Streams entering delivery tanks should satisfy a quality condition.
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Work lines - Summary CAHRD

. . CENTER
Alternative Formulations

P Proposed formulations given in the space of properties and total flows
and in the space of individual property flows

P Reduced the number of bilinear terms by using GDP formulations

» Explored the use of redundant constraints to improve the relaxations

Solution Methods

P Proposed a Logic Based Outer Approximation method to find local
solutions

» Proposed a Lagrangian Decomposition method to find global solutions

Main Focus
Novel Relaxation Strategies

P Proposed the use of new relaxations based on vector space properties
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Alternative
Formulations
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Alternative Formulations
Different space formulations
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Alternative Formulations
Redundant Constraints*

The total property flow to the delivery site is constrained by an upper
and lower bound. This information is lost when cF}. =C> F8. 1s relaxed.
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For any two properties q and q’ (in any stream or inventory) the ratio between
the total property flow of q to q’ is the same as the ratio between specific
property value. This is lost when the problem is relaxed.
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The property balance around each “splitter” should be held. This is lost
when the bilinear terms are relaxed.
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* Ruiz and Grossmann, 2010 “Using redundancy to strengthen the relaxation of nonconvex MINLPs”
To appear in Computers and Chemical Engineering Journal 7
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Alternative Formulations
Generalized Disjunctive Programming

Traditional MINLP Formulation _>: NG Wt One general
™~ state
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Proposed GDP Formulation — () O- = Two states
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By exploiting the underlying logic structure of the problem, a reduction of the
number of bilinear terms can be achieved 2

Carnegie Mellon



Carnegie Mellon

Solution Methods



Solution Methods

L e Logic Based Outer-Approximation CAED
CENTER
Outline of the Logic Based OA L GDP Master:
- Relax bilinear terms using McCormick
envelopes.
Master Problem - - Solve MIP using the Hull Reformulation.
(Linear GDP)
l NLP Subproblem:
- Fix boolean variables from master problem.
- Eliminate not active disjuncts

NLP Subproblem o - Solve small NLP formulation

Iteration Step:

- Generate linear cuts on solution point

No guaranty a of NLP subproblem.

global solution!
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Solution Methods
Lagrangian decomposition

Original
Formulation

— Q — 1,S; = 1,S,|+ >_Fin,,S;; = > Fout;;S,
/ 1,S,1=1,, Z Fin,S,, _Z Fout,,S, Constraints are linked together
o ' by the inventory and composition

\ / variables

Decomposable

Formulation Dualize

Duplicating inventory and composition
variables and dualizing the correspondent

— —
S _//v_ B _\: o : |'1= |1 ; S8Y=S] equalities leads to a temporal decomposable

Cemmeeeeees ' structure
_\: 4 1S, = 1,8, + X Fin, S, — " Fout, s,
/V \ i i
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Lagrangian decomposition

Solution Methods

(Algorithm)

Outline of the Lagrangian decomposition method

v

Initialize uo, BestLB,

|

If BestLB <LB
BestLB = LB

v

BestUB, k
|
v v ¥ V
Solve LR1 Solve LR2 Solve LRN| ~ -—----------
| |
LB=Y LB,y | """ - cmmmomemmmeooeoe-

Obtain UB
(Solve local MINLP)

If BestUB-BestLB < ¢

v

A\ 4

or k = maxiter — 1

Update Multipliers
ut*'=ut — a*Error
at=a/(b+k)

STOP

v

Carnegie Mellon

k=k+1

uo represents the dual multipliers;
BestLB, the best lower bound;
BestUB, the best upper bound and k,
the iter counter

Each subproblem (LRi) from the
decomposition is solved

A lower bound for the original
nonconvex problem can be obtained
by adding up the solution of each
(LRi) (i.e. LB,g)

Any local optimization algorithm can
be used to find an UB. (e.g. The logic
based outer-approximation applied
on the GDP formulation)
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Solution Methods
Illustrative Example

The implementation of the Lagrangian Decomposition method has been tested
in the following simple case

Supply Intermediate Delivery

Inlet Flows and Property /
Values are fixed \

Outlet Flows and Property
Values are fixed

Topology

(allowed connections)

Network Description:
- Two Supply, Intermediate and Delivery nodes
- Two properties transported

- Three time periods
13
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Solution Methods
Numerical Results

Lagrangian Decomposition

Representation of the nonzero flow streams in the different periods
for the global optimal solution

Period 1 | Period 2 , Period 3

D O D O

)
T

—() © L —®) ® O— 1 —O ® (—
Global Solution (Z = 14.22) (verified with BARON)

Remarks

45
40 | ——

- Forced to stop after 20 iterations (no improvement observed). ss X

- Finds the global solution (Z = 14.22) 3 26 \_‘\'—‘\._Nﬂ_,_,_.\‘_‘_‘_‘

20

- The existence of the duality gap is due to the nonconvex =21
nature of the problem 10 |

5 |
0
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Solution Methods

[ . CHED
iGN Generation of Real-world Instances i
CENTER
Lower Bound Upper Bound
o Nodes JP. JB. Jb 4 10
-'g ﬁ Properties Q 4 10
2 | Periods T 40 100
h Edges E 40% of all possible edges | 100% of all possible edges
P, 0 100 A
. c
o
D, 0 100 S
T O
Squ 0 1 % ©
S 0 1 > O &
mn >
St SY. 0 1
I 1V, 10 0 100
Fry B9 0 100 J

This table was used to generate random instances
15
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Solution Methods

Observations

Numerical tests using Lagrangian Relaxation CENTER
with temporal decomposition

Initialize uo, BestLB,

v

BestUB, k
|
v v ' Y 1- High computational
Solve LR1 Solve LR2 Solve LRN} ~—~~==""7="-- > : : :
| | time required m_sub
‘ problems (> 5min)
LB =3 LByy;
' e
IfBesttB<ILB | > 2' DIffICUItIeS tO flnd
BestLB =LB | local solutions
Obtain UB _______E
(Solve local MINLP)
~ If BestUB-BestLB < ¢
! ork = maxier 1 How do we tackle these
Update Multipliers . )
U =ut — o *Error ISSues”
oat=a/(b+k)
v
k=k+1 16
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Solution Methods

Finding Local Solutions
Outer Approximation Method

The MASTER problem can

Lower Bound MASTER be tightened by adding McCormick
L Convex envelopes for the bilinear
If MASTER Add linearizations
infeasible < Fix Integer (y) from solution of terms
STOP 7] NLP (y;)
+C o Ty — o e
- Bound NLP If NLP(y;) infeasible Jan <FyCann Chn A S
pper Boun (yj) remove y, Frn 2 {?.tcéil+cq!.t_1F{?. ~CclFT
| i 2R Cony +C g 1F —Co BT
2F Cony +C o F - C 00 RS
l Bounds,of/v_1 aty T Canty
If (Up Bound -Lo Bound) variables /
is less than ¢ S S R 1
STOP Similarly for terms 1 ;C gy
Remarks

- Reducing the number of bilinear terms in NLP(y;) leads to a more robust formulation

- Having good bounds for the variables is of main importance to find tight relaxations
17
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Solution Methods

Finding Local Solutions
Tighter bounds for variables (1)

Observation

If two streams are mixed together, the concentration of any given component in
the mixture is always higher/lower than the minimum/maximum concentration

1n the streams

Mathematical Representation
\ /
7@ Fije \”/ C,=>min(C, ) Vq,i,t
qi (i,j)eE qjt—

O //v'/ Co <max(Cy.y) V0t

(i,))ek

How can we use it to infer bounds for the compositions?

18

Carnegie Mellon



Solution Methods

o | CABD
Finding Local Solutions A
Tighter bounds for variables (11)
Lower Bounds Upper Bounds
upP .
L Cquf) - quo Vq, =1 L qut - quo Vq,l,t =1
. uP uP .
Car _grjl)mE(C ° ) VQ,it>1 Cit _(rlmsué(qut D vaQ.it>1
Illustrative Example
C10=0.2 =0 =1 t=2
LO UP LO UP LO UpP
Node 1 0.2 0.2 0.2 0.2 0.2 0.2
Node 2 0.3 0.3 0.3 0.3 0.3 0.3
Node 3 0.4 0.4 0.2 0.4 0.2 0.4
Node 4 0.5 0.5 0.4 0.5 0.2 0.5
Lower and upper bound tightening can be achieved
In the preprocessing step 19
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Solution Methods

CHED
Finding Local Solutions \—
Tighter bounds for variables (111)
Performance Analysis
Predicted lower bounds at first MASTER problem
/@\ Global Using original | Using inferred
Optimum bounds bounds
~@ 1] ‘@—
NS Instance 1 -2900 -4958 -4083
@ Instance 2 -10900 -20958 -14650
Remark

Improvements in the bounds prediction can be obtained if lower/upper bounds
of flows and inventory levels are considered

1 T Lo ~L Lo —~LO
Iq:’f—lcqif— T “Ft;l:fc.g;lf 1 I.:g:f 1(—_ :f 1 + T H;l:f Ccﬂf 1
i — - (i, ijE - (1, j)EE vy .
C e = min ( 7 )= 707 7q. 1.1
gif qif
i 1 uF  ~UF UF ~UF
Iq:f— C gif-1 + ‘\_‘ E}:rc.@f 1 Iq:f lcq:f 1 T ‘F:;ur C.g;r 1
Ce =max ( oD )< iéje Vg, 1.1
1. I 20
qif qit
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Solution Methods

Finding Local Solutions
Reduced number of bilinear terms

Traditional MINLP Formulation _>: ()= One general
I state
- -1 -1 -1 B -1 B () . E -
Coely =Coy I + : CoFoy + i; CopsFpy— D CouiFoy Yqe O, jeJ  ieT
s ‘e J !
EJ".;geE fi?.;'".;")eE EJ';J':]EE
Proposed GDP Formulation _> () O- é: Two states
) 7, _
Cgf I, = Cgf—ljﬁ—l T i; C;;'Fj',r'f T _ ) _
((JEJ{'EE o }/..i‘l‘
volck =l YqeO.jed%teT
B Vs . E ; it git-1 = s
_z;cgff—l'Fj'ﬁ TqeQ,jeJ el
(Fhes : —

By exploiting the underlying logic structure of the problem, a reduction of the
number of bilinear terms can be achieved 1
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: Numerical Results
Performance Analysis

- 11 random instances
- Outer approximation solver DICOPT(GAMYS)

- Three different formulations (all using McCormick envelopes):

1- Original MINLP
2- Formulation with reduced number of bilinear terms

3- Formulation with reduced number of bilinear terms plus bound tightening

- Forced to stop after 10 iterations or 30 minutes

Remarks

- Formulation (2) and (3) found feasible solutions in more than 70% of instances
- Formulation (3) outperformed Formulation (2) in 20% of the instances
- Formulation (1) led to a large number of “false” infeasible problems

Carnegie Mellon

| éolution Methods | CUPD
Finding Local Solutions A
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v

Initialize uo, BestLB,
BestUB, k

Solution Methods

Solution of LR; sub-problems
Spatial Decomposition

v v

Solve LR1

Solve LR2

v

Solve LRN

v

LB =>LB g,

|

If BestLB < LB
BestLB = LB

|

Obtain UB
(Solve local MINLP)

|

Update Multipliers
ut*'=ut — a*Error
at=a/(b+k)

|

Carnegie Mellon

k=k+1

v

If BestUB-BestLB < ¢
ork=

maxiter — 1
STOP

CENTER

Spatial Decomposition

O—0—0

OO0

O—0—0

Period N

How do we decompose
it spatially?
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Solution Methods |
Solution of LRI sub-problems CABD

Minimal cut-edge with fixed nodes CENTER

Objective: Minimize the edges that cross the boundaries
of each subset

Incidence
Matrix T~
min > Ap(Vic = Zy) If y, = 1 then the
ik node i belongs to
st. Dy =1 Vi Number of nodes the subset k
k /' in disjoint subsets
Z Yik :ak vk

] 24
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Solution Methods
Solution of LRI sub-problems Qﬂ?&

Minimal cut-edge with fixed nodes example

Dualized constraints necessary: 3(n+1)
(n: number of properties considered)

25
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Solution Methods
Solution of LR; sub-problems Qﬂ?\e

Numerical Results

-Baron takes 347 seconds (~6min) to solve the problem with a
solution of 20954.8

-The spatial decomposition solves the problem in 1 iteration:

MIP separation problem: 5 seconds

Sub-problem 1: (sol: 6096.0) 1.6 seconds

Sub-problem 2: (sol: 11451.8) 1.4 seconds

Sub-problem 3: (sol: 3407.0) 1.5 seconds

TOTAL: (sol: 20954.8) 9.5 seconds
Remarks:

- Even though it is not expected for general problems to converge in
one iteration, even with 15 iterations, the time necessary would be
~1 min
26
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Novel
Relaxations

27
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Novel Relaxation Strategies
Vector space properties to strengthen
the relaxation

T~

Epl  — — F_PJ Main building block
of a process network
Algebraic Representation Vectorial Representation
v, Lv
B £ - Vector Space
Z(F P"r —F P/ =0 v lv Interaction Exposed
n J‘.F‘E L B F
iel, n !
ZF;?E_F;?H:O Vep = (B By s B L F)
=l =(1.1,....1 —1)

vP;. =(ﬁ“",gﬂ", ..... B/ ~P))

Exploit interaction to develop cuts (3-D Case)

EFFHJ_FE N VXV = v ,&EEIEI""’+EI‘:9.F} _aﬂ}:.;_l-'.u 5P _p
F P F =1, 3
. i Ly P i
Ve LV, CUs _ f<aR*+a*F, —a*F°  p_p_p
(for a given . . -
j and n) B zaF? +a”F, —a¥F7 B, =B -P
a:%jﬂ&ilﬁ B =aF +a°F, —a°FE”
VF
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CrPD

CENTER

Numerical Results*

Table — Comparison of the performance of proposed approach with traditional relaxations

Traditional Approach Proposed Approach
Instance GO LB Nodes Time(s) LB Nodes Time(s)

1 82.78 78.25 11 20 81.6 4 9

2 151.96 | 142.10 35 30 144.30 17 17
3 5.19 4.86 87 109 5.05 6 22
4 9.79 8.22 650 542 8.78 365 325
5 12.60 12.48 5 19 12.60 1 17
6 -264.01 | -574.5 877 596 -530.0 460 321
7 -1308.0 | -1985.3 97 il -1930.0 63 56

Pooling problems!

/ All problems were solved using a Pentium(R) CPU 3.4 GHz and 1GB RAM

*Ruiz J.P. and Grossmann |.E. 2010, “Exploiting Vector Space Properties for the Global

Optimization of Process Networks” , Optimization Letters

Carnegie Mellon
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Remarks CHiPD

CENTER

P Proposed formulations given in the space of properties and total flows
and in the space of individual property flows

P Reduced the number of bilinear terms by using GDP formulations

P Explored the use of redundant constraints to improve the relaxations

» Proposed a Logic Based Outer Approximation method to find local

solutions
» Proposed a Lagrangian Decomposition method to find global solutions

P Proposed the use of new relaxations based on vector space properties

Future Work

- Implement spatial decomposition of the sub-problems within the global
optimization framework.

- Add cuts to strengthen relaxation for LR (from Vector Space Analysis?)

30
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