Exploiting vector space properties for the global optimization of process networks

Juan Pablo Ruiz

Ignacio Grossmann

Enterprise Wide Optimization Meeting

March 2010

Motivation

- The **optimization of process networks** is one of the most frequent problems that is addressed in **process systems engineering** (e.g. optimization of pooling networks, heat exchanger networks and water treatment networks)

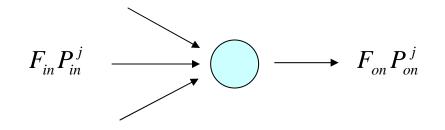
- Mass and energy balances are the common denominator of these systems and are often represented through equations with bilinear terms.

- Bilinearities lead to **nonconvex** problems hence, **global optimization** techniques are required.

- Variations of the **spatial branch and bound** framework are used to solve the problems. They heavily rely on **tight relaxations**.

Goal: Propose a methodology to find stronger relaxations for the global optimization of process networks.

Introduction



Building block of process networks

General mass and energy balance formulation

$$\sum_{i \in I_n} (F_{in} P_{in}^j) - F_{on} P_{in}^j = 0 \qquad \forall n \in N, \forall j \in J$$

$$\sum_{i \in I_n} F_{in} - F_{on} = 0 \qquad \forall n \in N$$
(MPB)

Sets:

N : Nodes in the network I_n : Streams entering node n and J : Property type

Vectorial Representation

For a given node *n* and property *j* we define the *vectors*:

$$v_F = (F_1, F_2, \dots, F_{|I|}, F_o)$$
 $v_E = (1, 1, \dots, 1, -1)$ $v_P = (P_1, P_2, \dots, P_{|I|}, -P_o)$

(*MBP*) can be represented as:

$$v_F . v_E = 0$$
$$v_P . v_E = 0$$

Or equivalently, in **vectorial form**:

3-Vector Representation
$$\begin{array}{c} v_F \perp v_E \\ v_P \perp v_E \end{array}$$
 (VMPB)

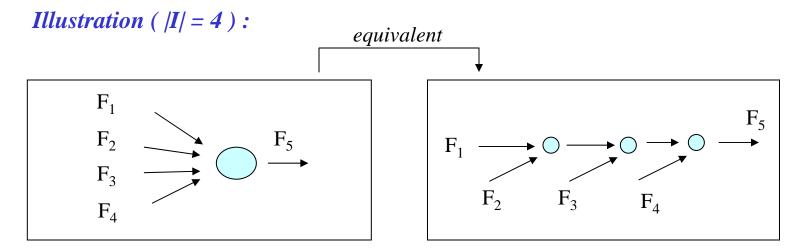
The interaction between the vector spaces $\mathbf{v}_{\mathbf{F}}$, $\mathbf{v}_{\mathbf{P}}$ and the vector $\mathbf{v}_{\mathbf{E}}$ is clearly exposed in the 3-Vector Representation.

Minimal Set

We define a *minimal set*, the set composed by three elements (i.e. |I|+1 = 3)

Lemma 1:

Any system of the form (VMBP) can be decomposed as the intersection of /I/-1 3-Vector Representation of minimal sets



Properties of the minimal set

Lemma 2: The property vectors (v_P) and flow vectors (v_F) in a minimal set are related as follows:

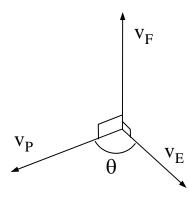
 $v_P \perp v_F \land v_F \perp v_E \Longrightarrow v_P \times v_E \parallel v_F$

Or equivalently

$$v_P . v_F = 0, v_E . v_F = 0 \Longrightarrow v_P \times v_E = \alpha v_F$$

where
$$\alpha = \frac{\|v_P\| \sqrt{3} \sin \theta}{\|v_F\|}, \ 0 \le \theta \le 2\pi$$

Illustration:



The cross product between v_P and v_E is parallel to v_F

Properties of the minimal set (cont.)

Lemma 3: The space defined by the minimal set is **nonconvex**

Illustration:

Given two points in the set

The following point, which is a convex combination, is not in the set

$$0.5v_{F}^{1} + 0.5v_{F}^{2} = v_{F}^{12} = \{1.5, 1, 2.5\}$$

$$0.5v_{P}^{1} + 0.5v_{P}^{2} = v_{P}^{12} = \{2, 1, -1.5\}$$

$$0.5v_{E}^{1} + 0.5v_{E}^{2} = v_{E}^{12} = \{1, 1, -1\}$$

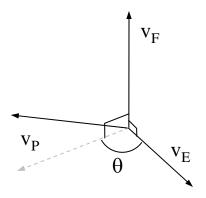
$$V_{F} \cdot V_{P} \neq 0$$

Convex relaxation of minimal set (Traditional Approach)

A *traditional relaxation* of (MPB) is given by replacing the bilinear terms with the *McCormick* convex envelopes.

$$\begin{split} &\sum_{i \in \{1,2\}} (F_i P_i) - F_o P_o = 0 \\ &\sum_{i \in \{1,2\}} F_i - F_o = 0 \\ &FP_i \leq F_i P_i^{up} + F_i^{lo} P_i - F_i^{lo} P_i^{up} \\ &FP_i \leq F_i P_i^{lo} + F_i^{up} P_i - F_i^{up} P_i^{lo} \\ &FP_i \geq F_i P_i^{up} + F_i^{up} P_i - F_i^{up} P_i^{up} \\ &FP_i \geq F_i P_i^{lo} + F_i^{lo} P_i - F_i^{lo} P_i^{lo} \end{split}$$

The orthoganality between v_P and v_F is lost!



 $v_F \times v_P = \alpha v_F$ implicitly defines the orthogonality between v_P and v_F

Valid cuts from cross product

Based on *Lemma 2* the following is a valid cut

 $v_F \times v_P = \alpha v_F$

Which in algebraic form reads

$$P_{2} + P_{o} = \alpha F_{1}$$
Nonconvex!
$$P_{1} - P_{o} = \alpha F_{2}$$

$$P_{1} - P_{2} = \alpha F_{o}$$
(CPC)

From where the following *linear cuts* are derived:

$$\begin{split} \beta_{i} &\leq \alpha F_{i}^{up} + \alpha^{lo} F_{i} - \alpha^{lo} F_{i}^{up} \\ \beta_{i} &\leq \alpha F_{i}^{lo} + \alpha^{up} F_{i} - \alpha^{up} F_{i}^{lo} \\ \beta_{i} &\geq \alpha F_{i}^{up} + \alpha^{up} F_{i} - \alpha^{up} F_{i}^{up} \\ \beta_{i} &\geq \alpha F_{i}^{lo} + \alpha^{lo} F_{i} - \alpha^{lo} F_{i}^{lo} \end{split}$$
 $i = o, 1, 2$

where $\beta_1 = P_o - P_2$, $\beta_2 = P_1 - P_o$ and $\beta_o = P_1 - P_2$

Bounds for α

From the definition of *cross product*:

$$\alpha^{up} = -\alpha^{lo} = \max\left(\frac{\|v_p\|\sqrt{3}\sin\theta}{\|v_F\|}\right) = \frac{\|v_p\|_{\max}\sqrt{3}}{\|v_F\|_{\min}} = \frac{\|v_p^{up}\|\sqrt{3}}{\|v_F^{lo}\|}$$

Tighter lower and upper bounds can be obtained by using *(CPC)*:

$$\alpha^{up} = \min(\max\frac{-P_2 + P_o}{F_1}, \max\frac{-P_1 + P_o}{F_2}, \max\frac{P_2 - P_1}{F_o})$$
$$\alpha^{lo} = \max(\min\frac{-P_2 + P_o}{F_1}, \min\frac{P_1 - P_o}{F_2}, \min\frac{-P_2 + P_1}{F_o})$$

Proposed vs Traditional Approach

Proposition

The proposed cuts are not dominated by the McCormick convex envelopes

Illustration

Given the minimal set:

$$F_1P_1 + F_2P_2 = F_3P_3$$

 $F_1 + F_2 = F_3$

where: $0.5 \le F_1 \le 2, 1.5 \le F_2 \le 2.5, 2 \le F_3 \le 4.5$ $0.5 \le P_1 \le 1.5, 0 \le P_2 \le 2, 0 \le P_3 \le 2$

the region in the space with fixed $F_1=0.5$, $F_2=2.3$, $F_3=2.8$, $P_1=1.2$, $P_2=0.1$ is $P_3 = [0.19-0.43]$ using the McCormcik envelopes and $P_3 = [0.23-0.36]$ using the proposed cuts

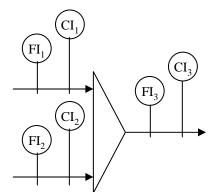
Case Study (Data Reconciliation)

Problem Statement:

Find the set of values of flows and composition that minimize the squared error when compared with the measurements.

System representation (Instance 1-2):

Formulation:

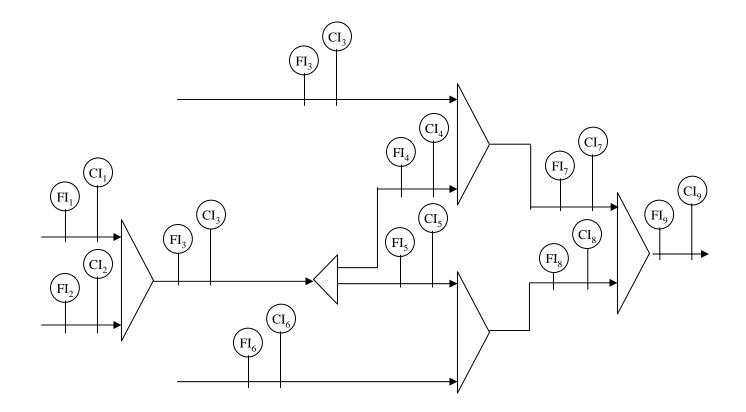


$$Min Z = w1(F_{1} - FI_{1})^{2} + w2(F_{2} - FI_{2})^{2}$$
$$+ w3(F_{3} - FI_{3})^{2} + w4(F_{4} - FI_{4})^{2}$$
$$+ w5(F_{5} - FI_{5})^{2} + w6(F_{6} - FI_{6})^{2}$$
$$F_{1}P_{1} + F_{2}P_{2} = F_{3}P_{3}$$
$$Nonconvex set$$

$$F_1^{lo} \le F_1 \le F_1^{up} \qquad F_2^{lo} \le F_2 \le F_2^{up} \\ P_1^{lo} \le P_1 \le P_1^{up} \qquad P_2^{lo} \le P_2 \le P_2^{up}$$

Numerical Results

System representation (Instance 3-4):



Numerical Results

		Traditional Approach			Proposed Approach		
Instance	GO	LB	Nodes	Time(s)	LB	Nodes	Time(s)
1	82.78	78.25	11	20	81.6	4	9
2	5.26	4.89	80	109	5.01	9	28
3	13.14	10.45	428	518	11.32	242	283
4	17.19	17.08	7	30	17.13	1	25

On average, the proposed approach led to **46%** improvement in lower bounds, **1/3 of nodes** necessary to find the solution and **1/2 the computational time**.

Conclusions

- Proposed a *vectorial representation* of the process network models.

- *Exposed* part of the *interaction* between the vector space defined by the *flows and properties*.

- *Proposed cuts* that strengthen the relaxation given by traditional approaches.

- The *performance of the method tested* in several instances related to data reconciliation in process networks shows *significant improvements*.