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Motivation: Rethinking of traditional manufacturing 
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Distributed Manufacturing  ̶  geographically dispersed network of facilities 
•  Exploit new technology and modularity 
•  Attend new requirements of the market 
•  Logistical aspects 

 
Potential applications 

•  Biomass supply chain (ethanol production) 

•  Shale gas supply chain (gas processing plants) 
•  Electric power generation (distributed power) 
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Motivation: Rethinking of traditional manufacturing 

1 J. Brimberg, P. Hansen, N. Mladonovic, and S. Salhi, “A survey of solution methods for the continuous location allocation problem,”, 2008.  

Tradeoff: Capital cost vs. Transportation Cost 
• Potential advantages of Distributed Manufacturing 
• Economy of scale favors large-scale production 

 
Need for a general framework that captures the tradeoff and design best network 

• Evaluate cost of centralized versus distributed manufacturing 
• Address higher level planning problems  

 
Problem formulated as Capacitated Multi-facility Weber problem1 

• Determine location in continuous 2-D space for new facilities in relation to the location of 
existing facilities 



Background: The Weber Problem 

2 A. Weber and C. J. Friedrich, Theory of the Location of Industries, 1929. 
3 L. Cooper, “The Transportation-Location Problem,” 1972.   
4 H. D. Sherali, I. Al-Loughani, and S. Subramanian, “Global Optimization Procedures for the Capacitated Euclidean and l p Distance Multifacility Location-allocation Problems,” , 2002 
5  J. Brimberg, P. Hansen, N. Mladonovic, and S. Salhi, “A survey of solution methods for the continuous location allocation problem,”, 2008.  

The Original Weber Problem (1909)2 

• 2 suppliers, 1 market, and 1 facility 
• Fixed points not colinear 
• Euclidean distances 
• Find facility location in 2-D space 

 
Capacitated Multi-facility Weber Problem 
• Facilities to be installed have maximum capacity 
• Cooper (1972) was the first to attempt this problem3 

• Exact method: can only be applied for very small-problems 
• Heuristic method: Alternate the solution of the transportation and location 

problems until convergence. Do not guarantee optimality 

• Sherali, Al-Lougani, Subramanian (2002) developed a Branch-and-
Bound Algorithm4 

• Several heuristic methods5 
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Problem statement 

Given: Find: 

•  A set of suppliers i, a set of consumer 
markets j, and their respective fixed 
location, availability and demand  

 
•  M potential distributed and N potential 

centralized set of k single-product 
facilities, and their corresponding 
maximum capacity and conversion rate 
(unknown location) 

•  Investment, operating and 
transportation costs  

•  Number, type and 2-D location of 
facilities to design a manufacturing 
network that minimizes the cost 

 

f ik, Dik 

Zik = {True, False} 
Zk = {True, False} 
(xk, yk) 

fkj, Dkj 

Zkj = {True, False} 
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Continuous variables: xk, yk, fik, fkj, fk, Dik, Dkj 
Boolean variables: Zk, Zik, Zkj 



General Disjunctive Programming (GDP) Formulation 
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Total cost 

Choice of facility 

Choice of link supplier/
facility 

Choice of link facility/
market 

Distance  
supplier/facility 

Distance  
facility/market 

Logic constraints 

Availability of  
raw-material 

Mass balances 

Market demand 



Illustrative example: ethanol production 
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Problem: 

•   2 switchgrass suppliers 
•  120                of switchgrass 

available per supplier  
•  Supplier 1: 
•  Supplier 2: 

  
•  2 markets 
•  Demand of 33,444                
      of ethanol per market 
 
•  3 potential facilities 

•  2 distributed 
•  1 centralized 

tons
week

gal
week

mcn = 83,610
gal

week( )
mcm = 41, 792

gal
week( )

cvk = 90%( )

$2,000
ton

$2,200
ton
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Illustrative example: ethanol production 

Intuitive answer: 1 centralized facility 
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$516,100/week 
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Illustrative example: ethanol production 

Optimal network: 2 distributed facilities 
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Illustrative example 

6 S. Kolodziej, P. M. Castro, and I. E. Grossmann, “Global optimization of bilinear programs with a multiparametric disaggregation technique,” J, 2013 
7 P. M. Castro, “Tightening piecewise McCormick relaxations for bilinear problems,”, 2014.  
8 R. Misener, J. P. Thompson, and C. a. Floudas, “Apogee: Global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes,” 2011  
.  

METHOD Cost                 . CPU time (s) 
BARON 503.9 703.2 
SCIP 503.9 656.7 

Multiparametric Disagreggation6 503.9 1,045.6 

Bilevel decomposition 503.9 36.1 

Global Optimization: 

Computational results 

Convex relaxation (lower bound) 
METHOD Cost                 . CPU time (s) 
McCormick 482.4 0.3 
Piecewise McCormick7 

(16 partitions) 503.8 2065.5 

Logarithmic Piecewise McCormick8  
(16 partitions) 503.8 35.9 

$103
week( )

$103
week( )
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Bilevel decomposition: Background 

Global Logic-Based Outer Approximation (GLBOA)9 

•  Non-convex GDP 

•  Master problem (MP): linear relaxation of 
the nonconvex GDP  
Ø  Lower Bound 

 
•  Subproblem (SP): lower dimensional 

nonconvex NLP in which the Boolean 
variables are fixed in the GDP 
Ø  Upper bound 

•  Every time MP is resolved, an integer cut 
is added to exclude fixed discrete 
variables already used 

9 F. Trespalacios and I. E. Grossmann, “Cutting planes for improved global logic-based outer-approximation for the synthesis of process networks .,”, 2015. 11 



Bilevel decomposition algorithm 

Algorithm Description 

Solve MP(MILP) 
Provides LB 

A
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Master problem: linear GDP relaxation 
provides a lower bound, and the selection of 
facilities to fix 

• Bilinear terms are approximated using 
Logarithmic Piecewise McCormick10 

• Distance constraints, which are convex, are 
linearized for a given discretization of space  

 
Subproblem: For the fixed alternative of 
facilities, the MINLP is solved with global 
solver to obtain an upper bound 

• Potential links, which involve discrete 
variables, are still to be determined.  

 
Integer cuts are added to the (MP)  

 

Stop 
Yes 

Solve SP (nonconvex 
MINLP) 

Provides UB 

Fix Zk = True

10 R. Misener, J. P. Thompson, and C. a. Floudas, “Apogee: Global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes,”  
2011  12 



Large-scale problems: Example 1 

Problem 
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•  10 suppliers  
•  120                of raw 

material available per 
supplier  

 
•  10 markets 
•  Demand of 100                 
      per market 

•  12 potential facilities 
•  10 distributed 
•  2 centralized 

tons
week

tons
week

mcn =1000 tons week( )
mcm =100 tons week( )
cvk = 90%( )
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Large-scale problems: Example 1 

Optimal network found: 10 distributed facilities 

$28,991,000 
/week 
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Large-scale problems: Example 1 

* Exceeded maximum CPU time 
** Estimated gap 
For the Bilevel Decomposition Algorithm, the master problem (MILP) was solved using CPLEX and the subproblem (nonconvex MINLP) was 
solved using BARON 

METHOD Cost  
 Optimality gap (%) CPU time (hrs) 

BARON 29,054 21% 12* 

SCIP 29,892 92% 12* 

Bilevel Decomposition 28,991 9%** 4* 

Global Optimization: 

$103
week( )

Computational results 
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Large-scale problems: Example 2 
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Problem 

•  10 suppliers  
•  Different availability of raw 

material for each supplier 
 
•  10 markets 
•  Demand of 100                 
      per market 

•  12 potential facilities 
•  10 distributed 
•  2 centralized 

tons
week

mcn =1000 tons week( )
mcm =100 tons week( )
cvk = 90%( )
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Large-scale problems: Example 2 

Optimal network found: 2 centralized + 1 distributed facilities 
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$24,984,000 
/week 
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f1 = 100 

f12 = 600 

f11 = 300 

supplier i 
 
market j 
 
facilities k 



METHOD Cost  
                Optimality gap (%) CPU time (hrs) 

BARON 24,990 0.6% 12* 

SCIP 25,181 7.6% 12* 

Bilevel Decomposition 24,984 0.2%** 4* 

Large-scale problems: Example 2 

* Exceeded maximum CPU time 
** Estimated gap 
For the Bilevel Decomposition Algorithm, the master problem (MILP) was solved using CPLEX and the subproblem (nonconvex MINLP) was solved 
using BARON  

$103
week( )

Global Optimization: 

Computational results 
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Conclusions 

 
Nonconvex GDP reformulated as an MINLP 
 
Commercial global solvers can solve small problems fairly easy 
 
Computationally expensive to solve large-scale problems 

•  Bilevel decomposition algorithm 
o  Although at this point it cannot rigorously solve the large-scale problems to 

optimality, provides superior results 
o  Potential to be improved 
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Future work 

Develop new cuts to tighten the relaxation 
• Improve the performance of both the solvers and the algorithm 
 

Rethink master problem formulation 
• So as it can be solved to optimality faster 

 
Apply formulation to different problem structures 
• Investigate how the network configuration is affected by changes in the parameters 
• Explore which conditions favor distributed and/or centralized manufacturing 
networks. 

 
Apply the model to biomass and electric power systems supply chain 
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