

Centralized versus Distributed Manufacturing: A Continuous Location-Allocation Problem

Cristiana Lopes Lara, Ignacio E. Grossmann Department of Chemical Engineering Carnegie Mellon University

EWO Meeting September 30-October 1, 2015

Motivation: Rethinking of traditional manufacturing

Distributed Manufacturing – geographically dispersed network of facilities

- Exploit new technology and modularity
- Attend new requirements of the market
- Logistical aspects

Potential applications

- Biomass supply chain (ethanol production)
- Shale gas supply chain (gas processing plants)
- Electric power generation (distributed power)

Motivation: Rethinking of traditional manufacturing

Tradeoff: Capital cost vs. Transportation Cost

- · Potential advantages of Distributed Manufacturing
- Economy of scale favors large-scale production

Need for a general framework that captures the tradeoff and design best network

- · Evaluate cost of centralized versus distributed manufacturing
- Address higher level planning problems

Problem formulated as Capacitated Multi-facility Weber problem¹

• Determine location in continuous 2-D space for new facilities in relation to the location of existing facilities

1 Brimberg, P. Hansen, N. Mladonovic, and S. Salhi, "A survey of solution methods for the continuous location allocation problem,", 2008.

Background: The Weber Problem

The Original Weber Problem (1909)²

- 2 suppliers, 1 market, and 1 facility
- Fixed points not colinear
- Euclidean distances
- Find facility location in 2-D space

Capacitated Multi-facility Weber Problem

- · Facilities to be installed have maximum capacity
- Cooper (1972) was the first to attempt this problem³
 - Exact method: can only be applied for very small-problems
 - <u>Heuristic method</u>: Alternate the solution of the transportation and location problems until convergence. Do not guarantee optimality
- Sherali, Al-Lougani, Subramanian (2002) developed a Branch-and-Bound Algorithm⁴
- Several heuristic methods⁵

4 H. D. Sherali, I.Al-Loughani, and S. Subramanian, "Global Optimization Procedures for the Capacitated Euclidean and I p Distance Multifacility Location-allocation Problems,", 2002

² A.Weber and C. J. Friedrich, Theory of the Location of Industries, 1929.

³ L. Cooper, "The Transportation-Location Problem," 1972.

⁵ J. Brimberg, P. Hansen, N. Mladonovic, and S. Salhi, "A survey of solution methods for the continuous location allocation problem,", 2008.

Problem statement

Given:

- A set of suppliers i, a set of consumer markets j, and their respective fixed location, availability and demand
- M potential distributed and N potential centralized set of k single-product facilities, and their corresponding maximum capacity and conversion rate (unknown location)
- Investment, operating and transportation costs

Find:

 Number, type and 2-D location of facilities to design a manufacturing network that minimizes the cost

Continuous variables: x_k , y_k , f_{ik} , f_{kj} , f_k , D_{ik} , D_{kj} Boolean variables: Z_k , Z_{ik} , Z_{kj}

General Disjunctive Programming (GDP) Formulation

6

Illustrative example: ethanol production

Illustrative example: ethanol production

Intuitive answer: 1 centralized facility

Illustrative example: ethanol production

9

Illustrative example

Computational results

Global Optimization:

METHOD	Cost $(10^3/week)$	CPU time (s)
BARON	503.9	703.2
SCIP	503.9	656.7
Multiparametric Disagreggation ⁶	503.9	1,045.6
Bilevel decomposition	503.9	36.1

Convex relaxation (lower bound)

METHOD	Cost $\binom{\$10^3}{week}$	CPU time (s)
McCormick	482.4	0.3
Piecewise McCormick ⁷ (16 partitions)	503.8	2065.5
Logarithmic Piecewise McCormick ⁸ (16 partitions)	503.8	35.9

6 S. Kolodziej, P. M. Castro, and I. E. Grossmann, "Global optimization of bilinear programs with a multiparametric disaggregation technique," J, 2013

7 P. M. Castro, "Tightening piecewise McCormick relaxations for bilinear problems,", 2014

8 R. Misener, J. P. Thompson, and C. a. Floudas, "Apogee: Global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes," 2011

Bilevel decomposition: Background

Global Logic-Based Outer Approximation (GLBOA)⁹

- Non-convex GDP
- <u>Master problem</u> (MP): linear relaxation of the nonconvex GDP
 - Lower Bound
- <u>Subproblem</u> (SP): lower dimensional nonconvex NLP in which the Boolean variables are fixed in the GDP
 - Upper bound
- Every time MP is resolved, an integer cut is added to exclude fixed discrete variables already used

Bilevel decomposition algorithm

Algorithm

Description

<u>Master problem:</u> linear GDP relaxation provides a lower bound, and the selection of facilities to fix

- Bilinear terms are approximated using Logarithmic Piecewise McCormick¹⁰
- Distance constraints, which are convex, are linearized for a given discretization of space

<u>Subproblem</u>: For the fixed alternative of facilities, the MINLP is solved with global solver to obtain an upper bound

• Potential links, which involve discrete variables, are still to be determined.

Integer cuts are added to the (MP)

Optimal network found: 10 distributed facilities

Computational results

Global Optimization:

METHOD	$\begin{array}{c} \textbf{Cost} \\ \binom{\$10^3}{week} \end{array}$	Optimality gap (%)	CPU time (hrs)
BARON	29,054	21%	12*
SCIP	29,892	92%	12*
Bilevel Decomposition	28,991	9%**	4*

* Exceeded maximum CPU time

** Estimated gap

For the Bilevel Decomposition Algorithm, the master problem (MILP) was solved using CPLEX and the subproblem (nonconvex MINLP) was solved using BARON

Optimal network found: 2 centralized + 1 distributed facilities

Computational results

Global Optimization:

METHOD	Cost (^{\$10³} / _{week})	Optimality gap (%)	CPU time (hrs)
BARON	24,990	0.6%	12*
SCIP	25,181	7.6%	12*
Bilevel Decomposition	24,984	0.2%**	4*

* Exceeded maximum CPU time

** Estimated gap

For the Bilevel Decomposition Algorithm, the master problem (MILP) was solved using CPLEX and the subproblem (nonconvex MINLP) was solved using BARON

Conclusions

Nonconvex GDP reformulated as an MINLP

Commercial global solvers can solve small problems fairly easy

Computationally expensive to solve large-scale problems

- Bilevel decomposition algorithm
 - Although at this point it cannot rigorously solve the large-scale problems to optimality, provides superior results
 - Potential to be improved

Future work

Develop new cuts to tighten the relaxation

• Improve the performance of both the solvers and the algorithm

Rethink master problem formulation

• So as it can be solved to optimality faster

Apply formulation to different problem structures

- Investigate how the network configuration is affected by changes in the parameters
- Explore which conditions favor distributed and/or centralized manufacturing networks.

Apply the model to biomass and electric power systems supply chain