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Motivation
Electricity mix gradually shifts to lower-carbon options

2Source:  EIA, Annual Energy Outlook 2015 Reference case

Electricity generation by fuel type 
(trillion kWh)
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(billion kWh)



• Increasing contribution of intermittent renewable power generation in the grid 
makes it crucial to include operational details in the hourly and sub-hourly level
in long term planning models to capture their variability

3Source:   • U.S. Energy Information Administration, based on the Electric Reliability Council of Texas (ERCOT)
• California ISO (CAISO)

Hourly generation in the ERCOT(Texas) electric, 
Sep 18-17, 2015 (MW) grid

CAISO duck curve - Net load in March 31 

Motivation
High variability in the renewables capacity factor 



Problem Statement
Given:

A set of existing generators with the respective
• generation technology*

• nuclear: steam turbine
• coal: steam turbine
• natural gas: 

steam turbine, 
gas-fired combustion turbine, 
and combined cycle

• solar: photo-voltaic
• wind turbines

• location
• nameplate capacity
• age and expected lifetime
• CO2 emission 
• operating costs
• operating data

• if thermal: ramping rates, operating limits, 
spinning and quick-start maximum reserve

• If renewable: capacity factor 
4* Assume no hydropower



Problem Statement
Given:

A set of potential generators with the respective
• generation technology

• nuclear: steam turbine
• coal: IGCC w/ or w/o carbon capture
• natural gas: 

gas-fired combustion turbine, 
combined cycle w/ 
or w/o carbon capture

• solar: 
photo-voltaic
concentrated solar panel

• wind turbines
• nameplate capacity
• expected lifetime
• CO2 emission 
• investment cost
• operating costs
• operating data

• if thermal: ramping rates, operating limits, 
spinning and quick-start maximum reserve

• If renewable: capacity factor 4



Problem Statement
Given:

• Projected load demand over the time-horizon at 
each location

• Distance between locations
• Transmission loss per mile

4

Find:
• When, where, which type and how many 

generators to invest
• When to retire the generators
• Whether or not to extend their lifetime 
• Power flow between locations 
• Detailed operating schedule 

in order to minimize the overall 
operating, investment, and 
environmental costs



Modeling Challenges
• Temporal multi-scale aspect 

of the problem:
• For a 30 year horizon, there are 

262,800 hourly sub-periods of 
time

• Spatial multi-scale aspect of 
the problem
• Large number of potential 

locations

• Large number of generators 
(hundreds or thousands 
depending on the area of scope)
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Hourly time 
resolution

Long term 
investment plans



Modeling Strategies
Time scale approach

8

Spring Summer Fall Winter

Year 1, spring: 
Investment 
decisions

Year 2, spring: 
Investment 
decisions

Day Day Day Day

x 93 x 94 x 89 x 89

• Horizon: 30 years, each year has 4 periods (spring, summer, fall, winter)
• Each period is represented by one representative day on an hourly basis

Varying inputs: load demand data, capacity factor of renewable generators
• Each representative day is repeated in a cyclic manner (~3 months reduced to 1 day)

2,880 subperiods
vs. 262,800 for full 
model

Mitra, S., Pinto, J. M., & Grossmann, I. E. (2014). Optimal multi-scale capacity planning for power-intensive continuous process under 
time-sensitive electricity prices and demand uncertainty

Time period: 𝑡𝑡 ∈ 𝑇𝑇

Season: 𝑠𝑠𝑠𝑠 ∈ 𝑆𝑆𝑆𝑆

Hourly Sub-
period: 𝑠𝑠 ∈ 𝑆𝑆



Modeling Strategies
Region and cluster representation

• Area of scope divided into regions r (similar climate and load demand).

• Potential location for generators are the midpoint of each region r.

• Instead of representing each generator separately, aggregate same generation technology and status (existing 
or potential) in clusters i in each region r.

• Decision of building/retiring and starting up/shutting down a generator switched from binary to integer variables
9

Palmintier, B., & Webster, M. (2014). Heterogeneous unit clustering for efficient operational flexibility modeling

Regions: 
𝑟𝑟 ∈ 𝑅𝑅

coal-st-old
ng-st-old

ng-ct-old

ng-cc-old

nuc-st-old

pv-old

wind-old

nuc-st-new

wind-new

pv-new

coal-igcc-new

coal-igcc-ccs-
new

ng-cc-new

ng-cc-ccs-
new

ng-ct-new

csp-new

Clusters: 𝑖𝑖 ∈ 𝐼𝐼𝑟𝑟



Modeling Strategies
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• Flow in each line is determined by the energy 
balance between each region r.

• This approximation ignores Kirchhoff’s Circuit 
Law, which dictates that the power will flow 
along the path of least impedance.

• Transmission capacity constraints are not 
binding for the considered case.

• The transmission losses are characterized by a 
factor of 1%/100 miles (not endogenously 
calculated)

Transmission: “truck-route” representation

Short, W. et al (2011). Regional Energy Deployment System (ReEDS)



MILP Model
Operating constraints:

• Energy balance: ensures that the sum of instantaneous power generated at region r plus the net 
power flow being sent to this region equal the  load demand plus a slack for curtailment.

• Capacity factor: limits the generation of renewable generators to be less than or equal to a given 
fraction of the capacity in each hour.

• Unit minimum and maximum output constraint: implies that each thermal unit is either OFF 
and outputting zero power, or ON and running within operating limits.

• Unit commitment constraint: computes the startup and shutdown of thermal generators.

• Ramping limits: captures the limitation on how fast thermal units can adjust their output power

11

Continuous variables: 
• Power output at sub-period s
• Curtailment generation slack at s
• Power flow  between regions at s
• Deficit from RES quota at t 
• Spinning reserve at s
• Quick-start reserve at s

Discrete variables: 
• # of generators installed at period t
• # of generators built at  t
• # of generators retired at t
• # of generators with life extended at t
• # generators ON at sub-period s
• # generators starting up at s
• # generators shutting down at s



MILP Model
Operating constraints:

• Total operating reserve: dictates that the total spinning reserve plus quick-start reserve must 
exceed a specific percentage of the load at each subperiod.

• Total spinning reserves: specifies that the total spinning reserve has to make up at least to a 
specific percentage of the load in a reserve sharing region at each subperiod.

• Maximum spinning reserve constraint: specifies the maximum fraction of capacity of each 
generator cluster that can contribute to spinning reserves.

• Maximum quick-start reserve constraint: specifies the maximum fraction of the capacity of each 
generator cluster that can contribute to quick-start reserves, and imposes that quick-start reserves 
can only be provided by the generators that are OFF, i.e., not active.

12

Discrete variables: 
• # of generators installed at period t
• # of generators built at  t
• # of generators retired at t
• # of generators with life extended at t
• # generators ON at sub-period s
• # generators starting up at s
• # generators shutting down at s

Continuous variables: 
• Power output at sub-period s
• Curtailment generation slack at s
• Power flow  between regions at s
• Deficit from RES quota at t 
• Spinning reserve at s
• Quick-start reserve at s



MILP Model
Investment constraints:

• Planning reserve requirement: ensures that operating capacity is greater than or equal the 
annual peak load plus a predefined reserve margin.

• Minimum annual RES energy contribution requirement: the RES quota target (imposed by 
environmental treaties) must be satisfied. 

• Maximum yearly installation: Limits the yearly installation per generation type to an upper bound.

Logical constraints:

Define the number of generators that are:
• operational,
• built, 
• retired, 
• have their life extended 
at each time period t.

13

Discrete variables: 
• # of generators installed at period t
• # of generators built at  t
• # of generators retired at t
• # of generators with life extended at t
• # generators ON at sub-period s
• # generators starting up at s
• # generators shutting down at s

Continuous variables: 
• Power output at sub-period s
• Curtailment generation slack at s
• Power flow  between regions at s
• Deficit from RES quota at t 
• Spinning reserve at s
• Quick-start reserve at s



MILP Model
Objective function: 

Minimization of the discounted total cost over the planning horizon comprising: 

• Variable operating cost

• Fixed operating cost

• Startup costs

• Cost of investments in new generators

• Cost to extend the life of generators that achieved their expected lifetime 

• Fuel consumption

• Carbon tax for CO2 emission

• Penalty for not meeting the minimum renewable annual energy production requirement 

Discrete variables: 
• # of generators installed at period t
• # of generators built at  t
• # of generators retired at t
• # of generators with life extended at t
• # generators ON at sub-period s
• # generators starting up at s
• # generators shutting down at s

Continuous variables: 
• Power output at sub-period s
• Curtailment generation slack at s
• Power flow  between regions at s
• Deficit from RES quota at t 
• Spinning reserve at s
• Quick-start reserve at s

14



Case Study: ERCOT (Texas)
• 30 year time horizon

• Data from ERCOT database

• Cost information from NREL (Annual 
Technology Baseline (ATB) Spreadsheet

• All costs in 2015 USD

• Regions:
• Northeast (midpoint: Dallas)

• West (midpoint : Glasscock County)

• Coastal (midpoint: Houston)

• South (midpoint : San Antonio)

• Panhandle (midpoint : Amarillo)

• Fuel price data from EIA Annual Energy 
Outlook 2015 - Reference case

• No imposed carbon tax 

• No RES quota requirement
15

MILP Model
Discrete variables: 413,644
Continuous variables: 682,947
Equations: 1,370,051
Solver: CPLEX 
optcr: 1%
CPU Time: 6.4 hours
Objective value: $183.4 billion
Optimality gap: 1%
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Cost Breakdown

Cost breakdown 
(billion $)

Fixed operating cost 36.3
Variable operating cost 18.7
Startup cost 0.2
Investment cost 20.1
Life extension cost 2.5
Fuel cost (not including startup) 104.8
Total Cost 183.4

20%

10%

0%12%

1%

57%

Fixed operating cost
Variable operating cost
Startup cost
Investment cost
Life extension cost
Fuel cost (not including startup)

Case Study: ERCOT (Texas)
Summary of Results:
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• Generation Capacity

Case study: ERCOT (Texas)
Summary of Results
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• Generation Capacity

Case study: ERCOT (Texas)
Summary of Results

• 47-fold increase in photo-voltaic capacity 

• 4% increase in wind capacity 

• 28% increase in natural gas combined-cycle capacity

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

G
en

er
at

io
n 

ca
pa

ci
ty

 (G
W

)

years

Generation capacity - total ERCOT

pv

wind

ng-cc

ng-ct

ng-st

coal-st

nuc-st



t=1

t=2

t=T

t=3

t =
T-1

αT
λT

Backward 
Pass

αT-1
λT-1

α4
λ4

α3
λ3

α2
λ2

• In the backwards pass it 
solves a Lagrangean
relaxation of the subproblem
and each time period t to get 
the cuts from next time period 
t+1. The multipliers for the cut 
are calculated from the 
Lagrangean problem and 
updated using subgradient
method.

• This framework can be very 
useful in the future when we 
extend the model to 
stochastic.

Repeat Forward 
and Backward 
passes until 
convergence

Forward 
Pass

x1

x2

x3

xT-2

xT-1

Decomposition Scheme
Nested Benders-like Decomposition for Mixed-Integer Programming
Combination of Nested Benders and Lagrangean Relaxation

20• Sun & Ahmed, Nested Decomposition of Multistage Stochastic Integer Programs with Binary State Variables, May 2016



Decomposition Scheme
Preliminary results – ERCOT case study
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Conclusions

• Time scale, region and clustering approaches reduce considerably 
the size of the MILP, making it possible to solve large instances. 

• For ERCOT region, future growth in generation capacity will be met 
by a portfolio of different generation technologies

• Decomposition algorithm has great potential to speed up the solution 
and allow a more refined representation of time.
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