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Electricity mix gradually shifts to lower-carbon options

Electricity generation by fuel type Renewable electricity generation by fuel type
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Source: EIA, Annual Energy Outlook 2015 Reference case 2
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Potential accelerated retirements
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High variability on the renewables
capacity factor

Hourly wind generation in the ERCOT (Texas) electric grid, Sep9-17 & Oct 18-26, 2015
megawatts (MWW
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- Increasing contribution of renewable power generation in the grid make it
crucial to include operation details in the hourly level in long term planning
models to capture their variability

Source: U.S. Energy Information Administration, based on the Electric Reliability Council of Texas (ERCOT) 4
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Problem statement

By taking the viewpoint of a
central planning, identify

- type

e Source

- capacity
of future power generation
infrastructure that can meet the
projected electricity demand while
minimizing:

« capital investment of all new

generating units

- the operating and maintenance
costs of both new and existing units

« environmental costs
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Problem statement

In order to be able to capture

the variability of generation by

renewable source units, and

assure that the load demand is

met at anytime, operational

decisions are also taken
- ramping limits

« Unit commitment status

Hourly time
resolution

Long term
investment plans




MILP Model

Obijective function: Minimization of the discounted total cost over the planning horizon
comprising

« Variable operating cost

Startup cost

Fixed operating cost

Cost of investments in new capacities

Penalty for not meeting the minimum renewable annual energy production requirement

subject to

- Energy balance: ensures that the sum of instantaneous power equal load at all times plus a
slack for potential excess generation by the renewable source generators (wind and solar)
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MILP Model

Obijective function: Minimization of the discounted total cost over the planning horizon
comprising

« Variable operating cost

Startup cost

Fixed operating cost

Cost of investments in new capacities

Penalty for not meeting the minimum renewable annual energy production requirement

subject to

« Unit minimum and maximum power output for thermal generators

Minimum % of the
capacity nameplate
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MILP Model

Obijective function: Minimization of the discounted total cost over the planning horizon

comprising

Variable operating cost

Startup cost

Fixed operating cost

Cost of investments in new capacities

Penalty for not meeting the minimum renewable annual energy production requirement

subject to

Capacity factor for renewable source generators
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MILP Model

Obijective function: Minimization of the discounted total cost over the planning horizon

comprising

Variable operating cost

Startup cost

Fixed operating cost

Cost of investments in new capacities

Penalty for not meeting the minimum renewable annual energy production requirement

subject to

Minimum reserve margin requirement: ensures that the generation capacity is greater than the
peak load by a predefined margin

Minimum annual Renewable Energy Source (RES) contribution requirement: establish that if the
RES quota target (imposed by environmental treaties) is not satisfied, there will be a penalty
applied to the deficit in RES production

10
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MILP Model

Obijective function: Minimization of the discounted total cost over the planning horizon
comprising

« Variable operating cost

Startup cost

Fixed operating cost

Cost of investments in new capacities

Penalty for not meeting the minimum renewable annual energy production requirement

subject to

« Unit commitment status and ramping limits for the thermal generators

OFF

t-1 Statup t  Shutdown t+ 1

11
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Modeling strategies for MULTISCALE

Time scale approach

_ X 93 X 94 X 89 X 89
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» Horizon: 30 years, each year has 4 periods (spring, summer, fall, winter)

« Each period is represented by one representative day on an hourly basis
Varying inputs: load demand data, capacity factor of renewable source generators

» Each representative week is repeated in a cyclic manner (~3 months reduced to 1 day)

» Connection between periods: only through investment decisions
12
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Modeling strategies for MULTISCALE

Clustering representation*

cluster j ¢ [

» Instead of representing each generator separately, aggregate same type of generators
in clusters

» Decision of building/retiring and starting up/shutting down a generator switched from
binary to integer variables

13

*Palmintier, B., & Webster, M. (2014). Heterogeneous unit clustering for efficient operational flexibility modeling
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Case study: ERCOT region

30 year time horizon Discrete variables: 103,050

Data from ERCOT database Continuous variables: 101,071
_ Equations: 278,183
All costs in 2012 U$ CPLEX

optcr = 0.05%

Clusters considered:

- coal-st-oldl - coal-igcc-new
- coal-st-old2 - coal-igcc-ccs-new
« ng-ct-old « Ng-cc-new
+ ng-cc-old + Ng-cc-ccs-new
« ng-st-old « Nng-ct-new
.« nuc-st-old . nuc-st-new Texas Interconnection Region
(ERCOT)
« pv-old * pv-new
- wind-old « wind-new
« CSp-new
. . SPP: Southwest Power Poal
ConSIderS reference* Case Scenarlo SERC: Southeast Electric Reliability Cowncil

'WECL: Western Electricity Coordinating

Council Sovrce: PUC

*Based on EIA Annual Energy Outlook 2015 fuel price data 14
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Case study: ERCOT region

Power generation by source

mcoal mpaturalgas = nuclear mPV mwind

Natural gas generation will
grow from 21% to 42% of the
total generation

Minimum cost: $ 304.9 billions
Optimality gap: 0.04%
CPU time: 637 s

Breakdown of the Total Cost

M Fuel Cost*

B Variable Operating Cost
I Fixed Operating Cost

W Startup Cost

B Investment Cost

15
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Conclusions and Future Work

- Time scale and clustering approaches reduce considerably the
size of the MILP, making it possible to solve large instances

- For ERCOT region, future investments will be focused on
natural gas and wind generation

- Natural gas will be the major contributor for the overall
generation by the end of the time horizon

- Future work:
- Include transmission in the model (multiple generation nodes)
- Apply decomposition technigques to speed up the solution

- Address the uncertainty by extending MILP model to multi-stage MILP
stochastic programming model

16
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