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Medium High Low 

Stochastic Programming 

The main idea behind two-stage Stochastic Programming 

Why we use stochastic programming? 
 To model those problems where some of the parameters are random.  
   (e.g. uncertain Reservoir Size, Demand, Prices) 
  Taking probability distribution into account while making decisions 
    and having possibility of corrective actions in the future (recourse) 

Stage-1 decisions are 
taken here and now 
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Scenario 1 Scenario 2 Scenario 3 

Stage-2 decisions are 
taken after uncertainty 

gets revealed  



Two-stage Stochastic MILP Model 

First stage 
variables 
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subproblem 1 

subproblem n   

subproblem 2 

Two-stage Stochastic MILPs 
have decomposable structure 

Scenario 
constraints are  

in blocks 

Non-anticipativity constraints 
link the scenarios 

(complicating constraints) 

If we dualize the Non-anticipativity constraints in the objective function, problem 
decomposes into scenarios and we can solve it using Lagrangean Decomposition. 

Stage-1 
decisions 

Stage-2 
decisions 



Lagrangean Decomposition Algorithm (Standard) 

Solve Lagrangean Problem 
to obtain LB 

Stop 

Find UB by using a heuristic 
Update Multipliers using 
nonsmooth optimization 

(e.g. subgradient method) 

Initial Multipliers (0 )   

k=0 

No 
Yes 

Gap  <  ε or   
k > kmax 
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Duality gap may exist 
due to the presence of 

integer variables 



1.  Extract the useful information from branch and bound tree of each subproblem 
and use it to improve the lower bound efficiently 

2.  Propose a new algorithm for MILP models with decomposable structure  
     (e.g. 2-stage stochastic) and benchmark the results against subgradient method  

Drawbacks of Nonsmooth Optimization 

Goal 
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  Using only the optimal solution of each subproblem 
and discard all relevant information generated 
during Branch and Bound algorithm   

  Slow convergence.  Number of iterations required 
are usually large. 

  Need a heuristic procedure to update the step size 
and upper bound in each iteration 

  Some has been improved by Bundle methods, 
Volume algorithm, etc. 

subproblem 1 

subproblem n   

subproblem 2 



Integer Programming (IP) Sensitivity Analysis 
IP sensitivity Analysis (Primal Analysis and Dual Analysis) allow us to find valid tight 
bounds for the objective function value when the objective function coefficients  are 
perturbed, using the information coming from the Branch and Bound solution tree.  

(2) 

(3) 

(4) 

(5) 

(1) 

(2) – (5) 

Original 
Problem 

Perturbed 
Problem 

Bounds on the  
Perturbed Problem  

using Sensitivity 
Analysis  
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Primal Analysis 

Dual Analysis 



Primal Analysis (PA): Upper Bound 

Primal Analysis says that the feasible solutions at any node in N1 stay feasible 
(but not necessarily optimal) when the objective function coefficients change to   
              . The best feasible solution is the minimum of the available solutions.  
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N1: Set of nodes pruned by optimality  
 (feasible integer solutions) 

N2: Set of nodes pruned by bound  
     (non-integer feasible solutions) 

N3: Set of nodes pruned by infeasibility 
 (leaf nodes pruned by infeasibility) 

+INF 
+INF 

-15 
-15 

+INF 
-14.412 

x3 = 1 

+INF 
-16.4 

+INF 
-17.364 

x4 = 1 x4 = 0 

x3 = 0 
0 

1 2 

3 4 

When IP or MIP problem  is solved using Branch and Bound method, each leaf node 
belongs to one of the following three sets of nodes: 



Dual Analysis (DA): Lower Bound 

Dual Analysis involves set of constraints that gives the maximum amount of 
decrease in the objective when the objective function coefficients are perturbed 

The bound                                remains valid if              satisfy the following set of constraints. 

where 

N1: Set of nodes pruned by optimality  
N2: Set of nodes pruned by bound  (Dawande and Hooker, 1998) 
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Variables 

Parameters from 
B&B tree 



Observation 

The  idea is to find such multipliers   
       that maximize the sum of 

upper and lower bounds generated 
by primal and dual analysis. 
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subproblem 1 

subproblem n   

subproblem 2 

IP Sensitivity 
analysis provide 
LB and UB on 

perturbed problem 



Variables 

Combining Sensitivity Analysis for Multiplier Updating 

Primal  
Analysis (PA) 

Dual  
Analysis (DA)  

Objective 
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Restriction  
on  

Parameters from B&B 
tree of each scenario 

Adjustable Parameters 

Proposed Linear 
Program 



Lagrangean Decomposition Algorithm (Proposed) 

Solve Lagrangean Problem 
to obtain LB 

Stop 

Find UB by using a heuristic 
Update Multipliers 
using proposed LP 

Initial Multipliers (0 )   

k=0 

No 
Yes 

Gap  <  ε or   
k > kmax 
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We are not focusing on 
feasible solution (UB) 
generation. The idea is 
to improve the Lower 

Bound efficiently. 

Note:  Comparison of the 
algorithm performance is in 
terms of number of iterations 
since basic branch and bound 

implementation is used for 
subproblem solutions  



Example (Dynamic Capacity Allocation Problem (DCAP)) 

Number 
of 

Scenarios 

Model Statistics (Deterministic Equivalent) 
Discrete 
Variables 

Continuous 
Variables 

Constraints First Stage 
Variables 

Second Stage 
Variables 

DCAP  
Ahmed and Garcia (2003)   

10 330 60 840 120 270 

200 6,600 1,200 2,44,800 2,400 5,400 
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Iterations 

10 Scenarios 

Fullspace Solution 

Subgradient Method 

Proposed Method 
(after Update 1 and 2) 

1100 

1200 

1300 

1400 
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1600 

1700 
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Iterations 

200 Scenarios 

Fullspace Solution 

Subgradient Method 

Proposed Method 
(after Update 1 and 2) 

Proposed method outperforms Subgradient method (<10 iterations vs. ~200 iterations) 



Conclusions 

 A method is proposed for improving the dual bound of decomposable MILP 
models using sensitivity analysis 

 The method outperforms standard subgradient method in terms of number of 
iterations for stochastic MILPs and significant computational savings can be 
achieved if optimizing each subproblem takes a long time 

 Application to more general class of MILPs (e.g. multistage stochastic) and 
improvement in the implementation efficiency are part of the future work 
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