

Emerging Topics in Dow Supply Chain

Contact: Kyle Harshbarger kharshbarger@dow.com

Dow.com

Dow Supply Chain Complexity - Network

Internal Plant-Product Digraph

- Indirect users of Top 10 shown
- Edges show primary paths only
- 60,000+ Plant-Product nodes
- 175,000+ Production or Transportation Edges

Dow Supply Chain Complexity – Production Types

Continuous Reactors

- One product or set of co-products produced constantly
- Concerned with rate, turnarounds, and co-product mix

Wheel Reactors

- Continuously made product until changeover
- Concerned with product cycling and contamination between products

Batch Reactors

- Product made in fixed lot sizes with changeovers
- Concerned with contamination, networked reactors, and logistics constraints

Dow Supply Chain Complexity – Multi-Product Planning

Shared Reactors

- Co-Products
- Wheel & Batch Production

Multi-Usage

- Direct Sales
- On-Site Consumption
- Off-Site Consumption
- Terminals/Warehousing

Potential Solutions

• Single Product Planning – Simpson (1958), Clark & Scarf (1960)

• Rationing Policies – Deshpande, Cohen, & Donohue (2003)

 Sequencing & Scheduling – Pierskalla & Deurmeyer (1978), Graves (1980)

• Stochastic Optimization – Almeder, Preusser, & Hartl (2009)

Single Product Planning Issues

- Simpson (1958) models are arborescent
 - Need demand nodes for safety stock setup
 - Difficult to scale
 - Lack of centralized decision making
- Clark & Scarf (1960) models are serial
 - Transshipment and other extensions are insufficient with Dow's network complexity
 - Echelon stock calculation difficult in MRP
 - Downstream inventory needs balancing to use echelon stock
- Multi-Product network reality
 - Product transition driven by service level differences
 - Product dependencies and priorities increase single product variance

Cattani, Jacobs, & Schoenfelder (2011)

Bossert & Willems (2007)

Rationing Policies Issues

- Rationing policies are difficult to codify
 - Eventual profitability unknown
 - Customer prioritization is political
 - What caused need to ration
- System limitations
 - MRP handles allocation, not thresholds
 - Maintenance of thresholds would need automation
- Multi-echelon considerations
 - Need to incorporate echelon stock of consumers for the threshold

Co-Product Scheduling Issues

Co-Product rate setting problem

- For a set of raws, a mix of output products is made
- There might be control over production mix
- With stationary demand, loss or waste is necessary
- Set rate to profit maximize, but need *outlets* for excess product
- Order-up-to and sell-down-to policies are optimal with salvage Liu, Zhang, Cheng, & Ru (2020)

Literature Gaps

- Vertical co-production is prevalent for semiconductors Chen, Tomlin, & Wang (2013)
- Horizontal co-production needs more work on actual outlets
 - Pricing, multi-echelon impact, cost allocation for activity-based costing, planning & sales behavior

Product Cycling Issues

- Graves (1980) could not a prove a form of the optimal policy
- Solutions are heavily MILP Karimi, Ghomi, & Wilson (2003)

Places to explore

- Model development complexity general models vs specific uses
- Network design: multiple plants with similar capabilities and geography-based demand
- Non-stationary demand
- Demand constrained vs. resource constrained models

Stochastic Optimization Issues

- Product envelope design
- Development cost vs. benefit
- Enterprise standards for stochastic processes
 - Demand quantity & time
 - Capacity quantity & time
 - Network connections
 - Disruption propagation

What's needed

- Reactive & proactive systems
- Use general distributions for forecasts
 - How much?
 - When?
 - Capacity and Demand
- How to generate distributional forecasts to describe uncertainty
- Pricing
- Right-sized information sharing

11

Example Solution – EO Railcar Scheduling

- Ethylene Oxide (EO) has 3 Continuous Reactors at 3 geographically distinct locations
- Must be stored in railcars with hard limits on total full cars (safety)
- Developed MILP to minimize cost
 - Determine full and empty railcar routing
 - Determine production rates
 - Predict site inventory
- Used in Reactive & Proactive Modes
 - Run on-demand ~ 2 minutes
 - Linked to MRP and Rail data
 - Can update capacity and usage on the fly

Example Solution – Monte Carlo of Global Demand

- High margin product with known global demand
- Customer volume known, timing uncertain, getting sale uncertain
- For Rough Cut Capacity Plan, need demand scenarios
- Use salesperson knowledge to describe uncertainty
- Simulate uncertainty with Monte Carlo
- Use demand profiles to create production plans

Under Development – Forecast Standards

- Probability Management (probabilitymanagement.org)
- Values can be scenarios
- Input agnostic
 - ML, AI, DRL
 - ARIMA, GLM
 - Knowledgeable sales rep
- Supports time-varying cumulative distribution
- Can be updated quickly to changing business conditions

Under Development – Graph Analysis

- End-to-end information for a product
 - Margins
 - Inventory time
 - Product prioritization
- Faster notification of cost changes
- Bottleneck identification
- Tradeoff analysis
- Automation vs Intelligent Agent

15

Contact: Kyle Harshbarger kharshbarger@dow.com

16