Rescheduling Bulk Gas Production and Distribution

WASU GLANKWAMDEE
JACKIE GRIFFIN ‘ OR @ 1 ,
JELE LINDEROTIL commmmosin grmazanoNy
JIERUI SHEN

ANDY BRINGHURST

AIR 1.
Jin HUTTON PRODUCTS =

BRIAN BAUMRUCKER \ C arnegieMell()n
/

LARRY BIEGLER

PITA EWO Meeting Carnegie Mellon March 15, 2006




Liquid Bulk Gas Production-Distribution

o Sites S A

@ Products P = {LOX,LNI} A

@ Customers C

g

S p
b
/b

S
p =
B

>

Planning Problem

How should one set production levels at the sites s € S and
sourcing decisions (amount delivered from s € S to ¢ € C) in

order to meet customer demand at minimum cost?



Bulk Gas Wrinkles

@ Most sites operate in two modes:

o Regular Mode
o Extended Mode (Costs more than regular)

@ Physics of Production

e Maximum total production: (LOX + LNI)
o Individual production limit. (Fraction of total)

Competitor Arrangements

@ Enter contractual “take-or-pay” arrangements with
competitors.

@ Allowed to remove (equal) fixed amount of product from
each other's sites

e Q C S : Set of 'Pick up’ locations
e R C S : Set of 'Take out’ locations




A Simple Planning Model

Objective

@ Production Cost + Distribution Cost

min Z Z(Ofps-'fps aF ﬂpseps) + Z Z Z(dscypsc)

pEP s€S pEP s€S ceC

@ Variables

e x,,: Regular production amountof pe Patsc S
o eps: Extended production amountof pe Patse S

@ Parameters

o ap,: Regular mode per unit production cost of pe P at s € S
o [ps: Extended mode per unit production cost of p € P at
ses

e dg. per-unit delivery cost from s € Stoce C



Constraints

Maximum Production Level

prngs, ZePSSNS VseS

peEP peP
Tps < Ap M, eps < ApNs VpeP, VseS

o Parameters

e M, Ns: Regular mode maximum total production at s € §
o N;: Extended mode maximum total production at s € S
e Ap: Maximum “air-fraction” of p € P

e This is a fairly crude (approximate) model of production



Constraints

Contract Amount Limit

> apg<®, VpeP
qeQ

v

Customer Demand

Zypsc 2 chy VP 6 P, VC 6 C
SES

@ Variables
® Ypsc: Amount of p € P shipped from s € StoceC
@ Parameters

o ®,: Contract amount for p € P
o Bp.: Customer c € C demand for p € P



Constraints
Inventory Balance

Tps + €ps — Zypsc —2ps = Alps, VpeEP,VseS
ceC

|

Resource: Driver Hours and Truck Hours

Z stcypsc < Ds, VseS
pEP ceC
stcypsc < Kps; VpeP, VseS§
ceC
@ Variables

o Al,s: Change in inventoryof pe Patse S
@ Parameters

o Zps: Amount of p € P competitor removes from s € S
e D,: Available driver hours at s € S
o Kp,: Available truck hoursof pe Pats €S



Using the Production-Distribution Model

@ Model is used to set monthly production levels and customer
sourcing decisions

@ Sometimes, during the course of the month, things get “out
of skew”

e A customers is about to be run out
e Plants don't have enough product to meet short-term
customer demand

What Happens in Practice

@ Daily planners (attempt) to do a manual adjustment to the
monthly schedule in order to meet customer demand

@ Sometimes, the planning model will be re-run given the
current (changed) input conditions.




Why?

One Possible Explanation

Known variation in plant supply and customer demand during the
course of the month

10 |
o Customer Usage

@ True Customer Inventory

What's the Curel?

The rescheduling burden can be alleviated by solving the model
at a finer time aggregation




Why?

Another Possible Explanation

Unknown (random) variation in components of the model

@ A plant just went down for I(t)
an unscheduled
maintenance.

@ A customer used three times - R —
as much as forecast t

What's the Cure?

@ In that case, a planning model that directly deals with the
inherent uncertainty might be warranted

e Stochastic Programming
e Robust Optimization




What to Do?

@ In either case, building and implementing a new model within
APCl is not to be taken lightly.

Project Scope

@ The company is interested in understanding why this
rescheduling must often take place

<

@ Build and experiment with a multi-period version of the
planning model.

o Will allow us to experiment with instances solved at variety
of time grains

@ Would need a multi-period model in order to create a
stochastic program anyway

A\




A Multi-Period Planning Model

e 7 ={1,2,...,T}: Set of time periods
@ Essentially add a “time index” to all the variables and
parameters

@ Make inventory a variable that can be carried from one period
to the next, e.g

xpst+epst_z ypsct_zpst+lpr,t—1_lprt =0 VpeP,VreR,Vte
ceC

@ Also add inventory cost to objective

DD D sl

pEP s€S teT



Creating the Model

@ Model built and created in Mosel modeling language
@ Mosel is convenient

o Air Products uses Mosel
e If we wish to build a stochastic programming model later on,
Mosel has new modules for building stochastic programs

@ Model reads instance data from (properly formatted) text files



The Facts

@ Models need data
@ Data is hard to come by

© = We will create our own data.

@ Instance Generation-Simulation code being created in C++

@ Data is random, but reasonable
o Sites

e Daily Production Rate
e with random outages

@ Customers:

e Normally Distributed
e On-Off

o Call-in



Class Structure

@ Site

o Location

e DailyMaxProduction

o SiteProductInfo (NumTrucks, Initial Inventories, etc.)
@ Customer

o Location

e Product

o (Abstract) DemandDistribution Class



Class Structure

@ InstanceFamily
e NumDays
e Sites
o Customers
@ Instance
e Something that can be solved!
o create(InstanceFamily &if, vector<int>
&daysPerPeriod)

@ All classes have a makeRandom() method that will instantiate
itself with random, reasonable, data.

@ When data is available, we can extended classes to instantiate

themselves by reading from a file



Sample Instance Creation

int
main(int argc, char *argv[])
{

InstanceFamily testInstance;

// 3 sites, 12 customers, 10 days
testInstance.makeRandom(3, 12, 10);

Instance instance;
vector<int> daysPerPeriod(4);
daysPerPeriod[0] = 2;
daysPerPeriod[1]
daysPerPeriod[2]
daysPerPeriod [3]

3

2
3;
3

)

instance.create(testInstance, daysPerPeriod);

instance.writeMosel (’EWO_AP.dat’);
}



Experiments

Experiment #1 — Can We?

@ Build large multi-period models

@ See if state-of-the-art commercial solvers
(XPRESS/CPLEX) as well as open-source solvers (Clp,
GLPK) can solve instances in reasonable computing time

Experiment #2 — What do we gain?
@ Solve same InstanceFamily with large and small time
buckets
@ Simulate customer inventories

o Deliveries made in equal (daily) increments
o Customer demand varies daily

A\




Experiments

@ Total number of customer outages

@ Average customer outage amount
© Others?

Other Experiments

© Measure cost and benefit of solving for a “robust” solution
in which customer demand is slightly exceeded
© How to handle “competitor relationships”

o As a Parameter?
e As a Variable?
e Random Variable!




Results

7.

D/
If - ;j
2

Hopefully Some Preliminary
Results by 3/15!



