
Rescheduling Bulk Gas Production and Distribution

Wasu Glankwamdee
Jackie Griffin
Jeff Linderoth

Jierui Shen

Andy Bringhurst
Jim Hutton

Brian Baumrucker
Larry Biegler

PITA EWO Meeting Carnegie Mellon March 15, 2006



Liquid Bulk Gas Production-Distribution

Sites S
Products P = {LOX, LNI}
Customers C

LOX

LNI

LNI

LOX

LOX

LNI

LOX

LOXLNI
LOX

L
O

X

L
N

I

L
O

X

L
N

I

Planning Problem

How should one set production levels at the sites s ∈ S and
sourcing decisions (amount delivered from s ∈ S to c ∈ C) in
order to meet customer demand at minimum cost?



Bulk Gas Wrinkles

Production

Most sites operate in two modes:

Regular Mode
Extended Mode (Costs more than regular)

Physics of Production

Maximum total production: (LOX + LNI)
Individual production limit. (Fraction of total)

Competitor Arrangements

Enter contractual “take-or-pay” arrangements with
competitors.

Allowed to remove (equal) fixed amount of product from
each other’s sites

Q ⊆ S : Set of ’Pick up’ locations
R ⊆ S : Set of ’Take out’ locations



A Simple Planning Model

Objective

Production Cost + Distribution Cost

min
∑
p∈P

∑
s∈S

(αpsxps + βpseps) +
∑
p∈P

∑
s∈S

∑
c∈C

(dscypsc)

Variables

xps: Regular production amount of p ∈ P at s ∈ S
eps: Extended production amount of p ∈ P at s ∈ S

Parameters

αps: Regular mode per unit production cost of p ∈ P at s ∈ S
βps: Extended mode per unit production cost of p ∈ P at
s ∈ S
dsc per-unit delivery cost from s ∈ S to c ∈ C



Constraints

Maximum Production Level∑
p∈P

xps ≤ Ms,
∑
p∈P

eps ≤ Ns ∀s ∈ S

xps ≤ ΛpMs, eps ≤ ΛpNs ∀p ∈ P, ∀s ∈ S

Parameters

Ms, Ns: Regular mode maximum total production at s ∈ S
Ns: Extended mode maximum total production at s ∈ S
ΛP : Maximum “air-fraction” of p ∈ P

This is a fairly crude (approximate) model of production



Constraints

Contract Amount Limit∑
q∈Q

xpq ≤ Φp ∀p ∈ P

Customer Demand∑
s∈S

ypsc ≥ Bpc, ∀p ∈ P, ∀c ∈ C

Variables

ypsc: Amount of p ∈ P shipped from s ∈ S to c ∈ C
Parameters

Φp: Contract amount for p ∈ P
Bpc: Customer c ∈ C demand for p ∈ P



Constraints
Inventory Balance

xps + eps −
∑
c∈C

ypsc − zps = ∆Ips, ∀p ∈ P, ∀s ∈ S

Resource: Driver Hours and Truck Hours

∑
p∈P

∑
c∈C

dscypsc ≤ Ds, ∀s ∈ S

∑
c∈C

dscypsc ≤ Kps, ∀p ∈ P, ∀s ∈ S

Variables
∆Ips: Change in inventory of p ∈ P at s ∈ S

Parameters
zps: Amount of p ∈ P competitor removes from s ∈ S
Ds: Available driver hours at s ∈ S
Kps: Available truck hours of p ∈ P at s ∈ S



Using the Production-Distribution Model

Model is used to set monthly production levels and customer
sourcing decisions

Sometimes, during the course of the month, things get “out
of skew”

A customers is about to be run out
Plants don’t have enough product to meet short-term
customer demand

What Happens in Practice

Daily planners (attempt) to do a manual adjustment to the
monthly schedule in order to meet customer demand

Sometimes, the planning model will be re-run given the
current (changed) input conditions.



Why?

One Possible Explanation

Known variation in plant supply and customer demand during the
course of the month

Customer Usage

Aggregate/Prorated Delivery
Volume

True Customer Inventory

I(t)

t

What’s the Cure!?

The rescheduling burden can be alleviated by solving the model
at a finer time aggregation



Why?

Another Possible Explanation

Unknown (random) variation in components of the model

A plant just went down for
an unscheduled
maintenance.

A customer used three times
as much as forecast

I(t)

t

What’s the Cure?

In that case, a planning model that directly deals with the
inherent uncertainty might be warranted

Stochastic Programming
Robust Optimization



What to Do?

In either case, building and implementing a new model within
APCI is not to be taken lightly.

Project Scope

The company is interested in understanding why this
rescheduling must often take place

Step #1

Build and experiment with a multi-period version of the
planning model.

Will allow us to experiment with instances solved at variety
of time grains

Would need a multi-period model in order to create a
stochastic program anyway



A Multi-Period Planning Model

T = {1, 2, . . . , T}: Set of time periods

Essentially add a “time index” to all the variables and
parameters

Make inventory a variable that can be carried from one period
to the next, e.g

xpst+epst−
∑
c∈C

ypsct−zpst+Ipr,t−1−Iprt = 0 ∀p ∈ P, ∀r ∈ R, ∀t ∈ T

Also add inventory cost to objective∑
p∈P

∑
s∈S

∑
t∈T

γpsIpst



Creating the Model

Model built and created in Mosel modeling language

Mosel is convenient

Air Products uses Mosel
If we wish to build a stochastic programming model later on,
Mosel has new modules for building stochastic programs

Model reads instance data from (properly formatted) text files



The Facts

1 Models need data

2 Data is hard to come by

3 ⇒ We will create our own data.

Instance Generation-Simulation code being created in C++

Data is random, but reasonable

Sites
Daily Production Rate
with random outages

Customers:
Normally Distributed
On-Off
Call-in



Class Structure

Site
Location
DailyMaxProduction
SiteProductInfo (NumTrucks, Initial Inventories, etc.)

Customer
Location
Product
(Abstract) DemandDistribution Class



Class Structure

InstanceFamily
NumDays
Sites
Customers

Instance
Something that can be solved!
create(InstanceFamily &if, vector<int>
&daysPerPeriod)

All classes have a makeRandom() method that will instantiate
itself with random, reasonable, data.

When data is available, we can extended classes to instantiate
themselves by reading from a file



Sample Instance Creation

int

main(int argc, char *argv[])

{

InstanceFamily testInstance;

// 3 sites, 12 customers, 10 days

testInstance.makeRandom(3, 12, 10);

Instance instance;

vector<int> daysPerPeriod(4);

daysPerPeriod[0] = 2;

daysPerPeriod[1] = 2;

daysPerPeriod[2] = 3;

daysPerPeriod[3] = 3;

instance.create(testInstance, daysPerPeriod);

instance.writeMosel(’EWO_AP.dat’);

}



Experiments

Experiment #1 — Can We?

Build large multi-period models

See if state-of-the-art commercial solvers
(XPRESS/CPLEX) as well as open-source solvers (Clp,
GLPK) can solve instances in reasonable computing time

Experiment #2 — What do we gain?

1 Solve same InstanceFamily with large and small time
buckets

2 Simulate customer inventories

Deliveries made in equal (daily) increments
Customer demand varies daily



Experiments

Metrics

1 Total number of customer outages

2 Average customer outage amount

3 Others?

Other Experiments

1 Measure cost and benefit of solving for a “robust” solution
in which customer demand is slightly exceeded

2 How to handle “competitor relationships”

As a Parameter?
As a Variable?
Random Variable!



Results

Hopefully Some Preliminary
Results by 3/15!


