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Liquid Bulk Gas Production-Distribution

Sites S
Products P = {LOX, LNI}
Customers C
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Planning Problem

How should one set production levels at the sites s ∈ S and
sourcing decisions (amount delivered from s ∈ S to c ∈ C) in
order to meet customer demand at minimum cost?



Bulk Gas Wrinkles

Production

Most sites operate in two modes:

Regular Mode
Extended Mode (Costs more than regular)

Physics of Production

Maximum total production: (LOX + LNI)
Individual production limit. (Fraction of total)

Competitor Arrangements

Enter contractual “take-or-pay” arrangements with
competitors.

Allowed to remove (equal) fixed amount of product from
each other’s sites

Q ⊆ S : Set of ’Pick up’ locations
R ⊆ S : Set of ’Take out’ locations



A Simple Planning Model

Objective

Production Cost + Distribution Cost

min
∑
p∈P

∑
s∈S

(αpsxps + βpseps) +
∑
p∈P

∑
s∈S

∑
c∈C

(dscypsc)

Variables

xps: Regular production amount of p ∈ P at s ∈ S
eps: Extended production amount of p ∈ P at s ∈ S

Parameters

αps: Regular mode per unit production cost of p ∈ P at s ∈ S
βps: Extended mode per unit production cost of p ∈ P at
s ∈ S
dsc per-unit delivery cost from s ∈ S to c ∈ C



Constraints

Maximum Production Level∑
p∈P

xps ≤ Ms,
∑
p∈P

eps ≤ Ns ∀s ∈ S

xps ≤ ΛpMs, eps ≤ ΛpNs ∀p ∈ P, ∀s ∈ S

Parameters

Ms, Ns: Regular mode maximum total production at s ∈ S
Ns: Extended mode maximum total production at s ∈ S
ΛP : Maximum “air-fraction” of p ∈ P

This is a fairly crude (approximate) model of production



Constraints

Contract Amount Limit∑
q∈Q

xpq ≤ Φp ∀p ∈ P

Customer Demand∑
s∈S

ypsc ≥ Bpc, ∀p ∈ P, ∀c ∈ C

Variables

ypsc: Amount of p ∈ P shipped from s ∈ S to c ∈ C
Parameters

Φp: Contract amount for p ∈ P
Bpc: Customer c ∈ C demand for p ∈ P



Constraints
Inventory Balance

xps + eps −
∑
c∈C

ypsc − zps = ∆Ips, ∀p ∈ P, ∀s ∈ S

Resource: Driver Hours and Truck Hours

∑
p∈P

∑
c∈C

dscypsc ≤ Ds, ∀s ∈ S

∑
c∈C

dscypsc ≤ Kps, ∀p ∈ P, ∀s ∈ S

Variables
∆Ips: Change in inventory of p ∈ P at s ∈ S

Parameters
zps: Amount of p ∈ P competitor removes from s ∈ S
Ds: Available driver hours at s ∈ S
Kps: Available truck hours of p ∈ P at s ∈ S



Using the Production-Distribution Model

Model is used to set monthly production levels and customer
sourcing decisions

Sometimes, during the course of the month, things get “out
of skew”

A customers is about to be run out
Plants don’t have enough product to meet short-term
customer demand

What Happens in Practice

Daily planners (attempt) to do a manual adjustment to the
monthly schedule in order to meet customer demand

Sometimes, the planning model will be re-run given the
current (changed) input conditions.



Why?

One Possible Explanation

Known variation in plant supply and customer demand during the
course of the month

Customer Usage

Aggregate/Prorated Delivery
Volume

True Customer Inventory

I(t)

t

What’s the Cure!?

The rescheduling burden can be alleviated by solving the model
at a finer time aggregation



Why?

Another Possible Explanation

Unknown (random) variation in components of the model

A plant just went down for
an unscheduled
maintenance.

A customer used three times
as much as forecast

I(t)

t

What’s the Cure?

In that case, a planning model that directly deals with the
inherent uncertainty might be warranted

Stochastic Programming
Robust Optimization



What to Do?

In either case, building and implementing a new model within
APCI is not to be taken lightly.

Project Scope

The company is interested in understanding why this
rescheduling must often take place

Step #1

Build and experiment with a multi-period version of the
planning model.

Will allow us to experiment with instances solved at variety
of time grains

Would need a multi-period model in order to create a
stochastic program anyway



A Multi-Period Planning Model

T = {1, 2, . . . , T}: Set of time periods

Essentially add a “time index” to all the variables and
parameters

Make inventory a variable that can be carried from one period
to the next, e.g

xpst+epst−
∑
c∈C

ypsct−zpst+Ipr,t−1−Iprt = 0 ∀p ∈ P, ∀r ∈ R, ∀t ∈ T

Also add inventory cost to objective∑
p∈P

∑
s∈S

∑
t∈T

γpsIpst



Creating the Model

Model built and created in Mosel modeling language

Mosel is convenient

Air Products uses Mosel
If we wish to build a stochastic programming model later on,
Mosel has new modules for building stochastic programs

Model reads instance data from (properly formatted) text files



The Facts

1 Models need data

2 Data is hard to come by

3 ⇒ We will create our own data.

Instance Generation-Simulation code being created in C++

Data is random, but reasonable

Sites
Daily Production Rate
with random outages

Customers:
Normally Distributed
On-Off
Call-in



Class Structure

Site
Location
DailyMaxProduction
SiteProductInfo (NumTrucks, Initial Inventories, etc.)

Customer
Location
Product
(Abstract) DemandDistribution Class



Class Structure

InstanceFamily
NumDays
Sites
Customers

Instance
Something that can be solved!
create(InstanceFamily &if, vector<int>
&daysPerPeriod)

All classes have a makeRandom() method that will instantiate
itself with random, reasonable, data.

When data is available, we can extended classes to instantiate
themselves by reading from a file



Sample Instance Creation

int

main(int argc, char *argv[])

{

InstanceFamily testInstance;

// 3 sites, 12 customers, 10 days

testInstance.makeRandom(3, 12, 10);

Instance instance;

vector<int> daysPerPeriod(4);

daysPerPeriod[0] = 2;

daysPerPeriod[1] = 2;

daysPerPeriod[2] = 3;

daysPerPeriod[3] = 3;

instance.create(testInstance, daysPerPeriod);

instance.writeMosel(’EWO_AP.dat’);

}



Experiments

Experiment #1 — Can We?

Build large multi-period models

See if state-of-the-art commercial solvers
(XPRESS/CPLEX) as well as open-source solvers (Clp,
GLPK) can solve instances in reasonable computing time

Experiment #2 — What do we gain?

1 Solve same InstanceFamily with large and small time
buckets

2 Simulate customer inventories

Deliveries made in equal (daily) increments
Customer demand varies daily



Experiments

Metrics

1 Total number of customer outages

2 Average customer outage amount

3 Others?

Other Experiments

1 Measure cost and benefit of solving for a “robust” solution
in which customer demand is slightly exceeded

2 How to handle “competitor relationships”

As a Parameter?
As a Variable?
Random Variable!



Results

Hopefully Some Preliminary
Results by 3/15!


