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Markov?

А. А. Марков. "Распространение закона больших чисел 
на величины, зависящие друг от друга". "Известия 
Физико-математического общества при Казанском 
университете", 2-я серия, том 15, ст. 135–156, 1906

A. A. Markov. "Spreading the law of large numbers to 
quantities that depend on each other." "Izvestiya of the 
Physico-Mathematical Society at the Kazan University", 
2-nd series, volume 15, art. 135-156, 1906

Andrey Andreyevich Markov



Transportation
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Why - Wide applications
• White, Douglas J. "A survey of applications of Markov decision 

processes." Journal of the operational research society 44.11 
(1993): 1073-1096.

Maintenance

Queuing Finance

Supply Chain 
Management

Healthcare

• Boucherie, Richard J., and Nico M. Van Dijk, eds. Markov 
decision processes in practice. Springer International 
Publishing, 2017.



• Saucedo, Victor M., and M. Nazmul Karim. "On-line optimization of stochastic processes using Markov Decision 
Processes." Computers & chemical engineering 20 (1996): S701-S706.

• Tamir, Abraham. Applications of Markov chains in chemical engineering. Elsevier, 1998.

• Wongthatsanekorn, Wuthichai & Realff, Matthew J. & Ammons, Jane C., 2010. "Multi-time scale Markov decision 
process approach to strategic network growth of reverse supply chains," Omega, Elsevier, vol. 38(1-2), pages 
20-32, February.

• Wong, Wee Chin, and Jay H. Lee. "Fault detection and diagnosis using hidden Markov disturbance models." 
Industrial & Engineering Chemistry Research 49.17 (2010): 7901-7908.

• Martagan, Tugce, and Ananth Krishnamurthy. "Control and Optimization of Bioprocesses Using Markov Decision 
Process." IIE Annual Conference. Proceedings. Institute of Industrial and Systems Engineers (IISE), 2012.

• Goel, Vikas, and Kevin C. Furman. "Markov decision process-based support tool for reservoir development 
planning." U.S. Patent No. 8,775,347. 8 Jul. 2014.

• Kim, Jong Woo, et al. "Optimal scheduling of the maintenance and improvement for water main system using 
Markov decision process." IFAC-Papers OnLine 48.8 (2015): 379-384.
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MDP x PSE



• Markov Decision Process is a less familiar tool to the PSE community for decision-
making under uncertainty.

• Stochastic programming is a more familiar tool to the PSE community for decision-
making under uncertainty.

• This talk will start from a comparative demonstration of these two, as a perspective 
to introduce Markov Decision Process.
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How – Comparative demonstration

• Dupačová, J., & Sladký, K. (2002). Comparison of multistage stochastic programs with recourse and stochastic dynamic programs with discrete time. ZAMM‐Journal of Applied 
Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, 82(11‐12), 753-765.

• Cheng, L., Subrahmanian, E., & Westerberg, A. W. (2004). A comparison of optimal control and stochastic programming from a formulation and computation perspective. Computers 
& Chemical Engineering, 29(1), 149-164.

• Powell, W. B. (2019). A unified framework for stochastic optimization. European Journal of Operational Research, 275(3), 795-821.



Random turn-out with 
Markovian property
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Dynamic Programming

Markov Decision Process

Approximate 
Dynamic Programming

Stochastic 
programming

Reinforcement learning

Hard to describe 
explicitly and 
exactly

Linear Programming

Policy Iteration

Value IterationMarkov Chain

Temporal difference learning

Things to cover

State representation

Extremely large 

Endogenous 
uncertainty

Exogenous 
uncertainty

Algorithmic tools for 
infinite horizon cases

1 2

3

Comparison of finite horizon cases



Approximate 
Dynamic ProgrammingReinforcement learning

Temporal difference learning

Random turn-out with 
Markovian property
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Dynamic Programming

Hard to describe 
explicitly and 
exactly

Linear Programming

Policy Iteration

Value Iteration

Markov Decision Process

Markov Chain

Things to cover

State representation

Extremely large 

Endogenous 
uncertainty

Exogenous 
uncertainty

Multi-stage stochastic programming VS Finite-horizon Markov Decision Process

• Special properties, general formulations and applicable areas

• Intersection at an example problem

Stochastic 
programming

Algorithmic tools for 
infinite horizon cases



8
Dupačová, J., & Sladký, K. (2002). Comparison of multistage stochastic programs with recourse and stochastic dynamic programs with discrete 
time. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and 
Mechanics, 82(11‐12), 753-765.

Richard Bellman
A Markovian Decision 
Process, Indiana Univ. Math. 
J. 6 No. 4 (1957), 679–684

Ronald A. Howard

Book: Dynamic 
Programming and 
Markov Processes, 1960

On the theory of dynamic 
programming. Proceedings 
of the National Academy of 
Sciences of the United States 
of America 38.8 (1952): 716.



9Goel, Vikas, and Ignacio E. Grossmann. "A class of stochastic programs with decision dependent uncertainty." Mathematical 
programming 108.2-3 (2006): 355-394.

Stochastic Programming

Endogenous 
uncertainty

Exogenous 
uncertainty

• Uncertainty parameter realizations are independent of decisions:
E.g. Stock prices for individual investors, Oil/gas reserve amount of wells to be drilled, 
Product demands for small business owners
• Uncertainty parameter realizations are influenced by decisions:

• Type I: Decisions impact the probability distributions. 
E.g. Block trades by institutional investors causing stock price changes
• Type II: Decisions impact the observations. 
E.g. Shale gas reserve amount revealed upon drilling



10Apap, Robert M., and Ignacio E. Grossmann. "Models and computational strategies for multistage stochastic programming under 
endogenous and exogenous uncertainties." Computers & Chemical Engineering 103 (2017): 233-274.

Stochastic Programming - Static & Exhaustive

Endogenous 
uncertainty

Exogenous 
uncertainty

• Uncertainty parameter realizations are independent of decisions:
E.g. Stock prices, Oil/gas reserve amount, Product demands

• Uncertainty parameter realizations are influenced by decisions:
• Type I: Decisions impact the probability distributions. 
• Type II: Decisions impact the observations. 

General form 
of multistage 
stochastic 
programming:

Non-anticipativity: 
Consistent decision down to 
the last shared time point of 
two scenarios.

𝜃𝜃: Endogenous uncertainty

�𝜃𝜃𝐻𝐻 �𝜃𝜃𝐿𝐿
𝑡𝑡 = 0

𝑡𝑡 = 1

𝑡𝑡 = 2

Scenario tree

�𝜃𝜃𝐻𝐻 �𝜃𝜃𝐿𝐿 �𝜃𝜃𝐻𝐻 �𝜃𝜃𝐿𝐿

Revealed after t=0 Revealed after t=1 Revealed after t=2

min
𝑥𝑥,𝑦𝑦,𝑧𝑧

�
𝑤𝑤∈𝑊𝑊

𝑝𝑝𝑤𝑤 ⋅�
𝑡𝑡=1

𝑇𝑇

𝑓𝑓𝑤𝑤,𝑡𝑡(𝑥𝑥𝑤𝑤,𝑡𝑡 ,𝑦𝑦𝑤𝑤,𝑡𝑡)

s. t. 𝑔𝑔𝑤𝑤,𝑡𝑡 𝑥𝑥𝑤𝑤 ,𝑦𝑦𝑤𝑤 ≤ 0, 𝑤𝑤 ∈ 𝑊𝑊, 𝑡𝑡 = 0, 1, … ,𝑇𝑇
𝑍𝑍𝑤𝑤,𝑤𝑤′,𝑡𝑡 ⇔ 𝐻𝐻𝑡𝑡 𝑌𝑌𝑤𝑤 , (𝑤𝑤,𝑤𝑤′, 𝑡𝑡) ∈ 𝑆𝑆𝑃𝑃𝑁𝑁

𝑍𝑍𝑤𝑤,𝑤𝑤′,𝑡𝑡
𝑥𝑥𝑤𝑤,𝑡𝑡 = 𝑥𝑥𝑤𝑤′,𝑡𝑡
𝑦𝑦𝑤𝑤,𝑡𝑡 = 𝑦𝑦𝑤𝑤′,𝑡𝑡

∨ ¬𝑍𝑍𝑤𝑤,𝑤𝑤′,𝑡𝑡 , 𝑤𝑤,𝑤𝑤′, 𝑡𝑡 ∈ 𝑆𝑆𝑃𝑃𝑁𝑁

𝑥𝑥𝑤𝑤,𝑡𝑡 = 𝑥𝑥𝑤𝑤′,𝑡𝑡, 𝑦𝑦𝑤𝑤,𝑡𝑡 = 𝑦𝑦𝑤𝑤′,𝑡𝑡 , 𝑤𝑤,𝑤𝑤′, 𝑡𝑡 ∈ 𝑆𝑆𝑃𝑃𝑥𝑥
𝑥𝑥: Continuous decision variables
𝑦𝑦: Binary decision variables;
𝑧𝑧: Binary indicating variables of scenario revelation

𝑤𝑤: Scenarios; 𝑡𝑡: Stages

Endogenous 
non-anticipativity
disjunctions

Exogenous 
non-anticipativity
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Markov Decision Process – Dynamic & Recursive

Random turn-out 
with Markovian 

property

State 
representation

• The system (the entity to model) transitions among a set of finite states
E.g. A machine working, or broken

• Probability distributions only depend on the current state

For 𝑡𝑡 = 0, … ,𝑇𝑇

𝑣𝑣 𝑠𝑠𝑡𝑡 = max
𝑎𝑎𝑡𝑡

[𝑓𝑓 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 + 𝛾𝛾�
𝑠𝑠𝑡𝑡+1

𝑃𝑃 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 𝑣𝑣 𝑠𝑠𝑡𝑡+1 ]

𝑣𝑣 𝑠𝑠𝑇𝑇 = 𝑉𝑉𝑇𝑇(𝑠𝑠𝑇𝑇)

𝑡𝑡: Stages
𝑠𝑠: States

General form of 
finite horizon 
MDP optimal 
condition

Transition diagram
𝑡𝑡 = 0

𝑡𝑡 = 1

𝑡𝑡 = 2

𝜃𝜃 remains uncertain

𝜃𝜃 = �𝜃𝜃𝐻𝐻

𝜃𝜃 = �𝜃𝜃𝐿𝐿

Not to reveal 𝜃𝜃
To reveal 𝜃𝜃

States:

Actions:
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Stochastic Programming
• Look ahead into future uncertainty with flexible form:

• Relationship between current stage decision and 
next stage behaviors can be described with 
constraints

• Reasonable number of stages (scenarios)
• Finite horizon

Markov Decision Process
• Look ahead into future uncertainty with recursive 

structure:
• Has state representation and corresponding 

Markovian behavior

• Reasonable number of states
• Can deal with infinite horizon dynamics

For 𝑡𝑡 = 1, … ,𝑇𝑇

𝑣𝑣 𝑠𝑠𝑡𝑡 = max
𝑎𝑎𝑡𝑡

𝑓𝑓 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 + 𝛾𝛾 �
𝑠𝑠𝑡𝑡+1∈𝑆𝑆

𝑃𝑃 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 𝑣𝑣(𝑠𝑠𝑡𝑡+1)

𝑣𝑣 𝑠𝑠𝑇𝑇 = 𝑉𝑉𝑇𝑇

𝑡𝑡: Stages
𝑠𝑠: States

min
action0

+
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑡𝑡

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘0 + 𝐸𝐸(�
𝑡𝑡=1

𝑇𝑇

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑡𝑡 ,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑦𝑦𝑡𝑡 )Static
Exhaustive

Dynamic
Recursive

min
𝑥𝑥,𝑦𝑦,𝑧𝑧

�
𝑤𝑤∈𝑊𝑊

𝑝𝑝𝑤𝑤 ⋅�
𝑡𝑡=1

𝑇𝑇

𝑓𝑓𝑤𝑤,𝑡𝑡(𝑥𝑥𝑤𝑤,𝑡𝑡 ,𝑦𝑦𝑤𝑤,𝑡𝑡)

s. t. 𝑔𝑔𝑤𝑤,𝑡𝑡 𝑥𝑥𝑤𝑤 ,𝑦𝑦𝑤𝑤 ≤ 0, 𝑤𝑤 ∈ 𝑊𝑊, 𝑡𝑡 = 0, 1, … ,𝑇𝑇
𝑍𝑍𝑤𝑤,𝑤𝑤′,𝑡𝑡 ⇔ 𝐻𝐻𝑡𝑡 𝑌𝑌𝑤𝑤 , (𝑤𝑤,𝑤𝑤′, 𝑡𝑡) ∈ 𝑆𝑆𝑃𝑃𝑁𝑁

𝑍𝑍𝑤𝑤,𝑤𝑤′,𝑡𝑡
𝑥𝑥𝑤𝑤,𝑡𝑡 = 𝑥𝑥𝑤𝑤′,𝑡𝑡
𝑦𝑦𝑤𝑤,𝑡𝑡 = 𝑦𝑦𝑤𝑤′,𝑡𝑡

∨ 𝑍𝑍𝑤𝑤,𝑤𝑤′,𝑡𝑡 , 𝑤𝑤,𝑤𝑤′, 𝑡𝑡 ∈ 𝑆𝑆𝑃𝑃𝑁𝑁

𝑥𝑥𝑤𝑤,𝑡𝑡 = 𝑥𝑥𝑤𝑤′,𝑡𝑡, 𝑦𝑦𝑤𝑤,𝑡𝑡 = 𝑦𝑦𝑤𝑤′,𝑡𝑡 , 𝑤𝑤,𝑤𝑤′, 𝑡𝑡 ∈ 𝑆𝑆𝑃𝑃𝑥𝑥
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Solve a problem with both tools – parking problem

• You are driving to the destination from street parking spot N, and you can 
observe whether parking spot n is empty only when arriving at the spot.

• By probability p, a spot is empty; By probability 1-p, a spot is occupied.

• The parking lot is always available with fee c (>1).

• The inconvenience penalty of parking at street parking spot n is n.

p

p

p

p

p

p

p

1-p 1-p

1-p

1-p

1-p
1-p

1-p

…

…

…

…
…

…

…

…

𝑛𝑛 = 𝑁𝑁 𝑛𝑛 = 𝑁𝑁 − 1 𝑛𝑛 = 𝑁𝑁 − 2

Decision to make at spot n=1,…,N: 

Park if possible OR Keep looking for closer spot

N 2 1 0
Destination

Free street parking Parking lot



• Indicating parameter 𝛿𝛿𝑛𝑛,𝑠𝑠
• 𝛿𝛿𝑛𝑛,𝑠𝑠 = 0: Spot 𝑛𝑛 is occupied in scenario 𝑠𝑠;
• 𝛿𝛿𝑛𝑛,𝑠𝑠 = 1: Spot 𝑛𝑛 is empty in scenario 𝑠𝑠;

• Binary variable 𝑦𝑦𝑛𝑛,𝑠𝑠
• 𝑦𝑦𝑛𝑛,𝑠𝑠 = 0: In scenario 𝑠𝑠, do not park in spot n;
• 𝑦𝑦𝑛𝑛,𝑠𝑠 = 1: In scenario 𝑠𝑠, park in spot n;

• Variable 𝑐𝑐𝑠𝑠: Cost of scenario 𝑠𝑠

• Variable 𝑝𝑝𝑠𝑠: Probability of scenario 𝑠𝑠. 𝑝𝑝𝑠𝑠 = ∏𝑛𝑛=1
𝑁𝑁 (𝑝𝑝 ⋅ 𝛿𝛿𝑛𝑛,𝑠𝑠 + 1 − 𝑝𝑝 1 − 𝛿𝛿𝑛𝑛,𝑠𝑠 )

• MILP model:
min�

𝑠𝑠

𝑐𝑐𝑠𝑠 ⋅ 𝑝𝑝𝑠𝑠

s. t.

𝑐𝑐𝑠𝑠 = �
𝑛𝑛=1

𝑁𝑁

𝑦𝑦𝑛𝑛,𝑠𝑠 ⋅ 𝑛𝑛 + 1 −�
𝑛𝑛=1

𝑁𝑁

𝑦𝑦𝑛𝑛,𝑠𝑠𝛿𝛿𝑛𝑛,𝑠𝑠 ⋅ 𝑐𝑐, ∀𝑠𝑠 ∈ 𝑆𝑆

𝑦𝑦𝑛𝑛,𝑠𝑠 ≤ 𝛿𝛿𝑛𝑛,𝑠𝑠 ,∀1 ≤ 𝑛𝑛 ≤ 𝑁𝑁, 𝑠𝑠 ∈ 𝑆𝑆

�
𝑛𝑛

𝑦𝑦𝑛𝑛,𝑠𝑠 ≤ 1, ∀𝑠𝑠 ∈ 𝑆𝑆

𝑦𝑦𝑛𝑛,𝑠𝑠 = 𝑦𝑦𝑛𝑛,𝑠𝑠′ , ∀1 ≤ 𝑛𝑛 ≤ 𝑁𝑁𝑠𝑠,𝑠𝑠′
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑠𝑠, 𝑠𝑠𝑠 ∈ 𝑆𝑆
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Stochastic Programming

cost of 
street 

parking
cost of lot parking

Park only when empty

Each scenario park at most one spot

Non-anticipativity constraints

“Keep driving anyway”

p

p

p

p

p

p

p

1-p 1-p

1-p

1-p

1-p
1-p

1-p

…

…

…

…
…

…

…

…

𝑛𝑛 = 𝑁𝑁 𝑛𝑛 = 𝑁𝑁 − 1 𝑛𝑛 = 𝑁𝑁 − 2

p

p

p

p

1-p 1-p

1-p
1-p

…
…

…

…

…

𝑛𝑛 = 𝑁𝑁 𝑛𝑛 = 𝑁𝑁 − 1 𝑛𝑛 = 𝑁𝑁 − 2

…

“Park when the farthest spot is available”



• Indicating parameter 𝛿𝛿𝑛𝑛,𝑠𝑠
• 𝛿𝛿𝑛𝑛,𝑠𝑠 = 0: Spot 𝑛𝑛 is occupied in scenario 𝑠𝑠;
• 𝛿𝛿𝑛𝑛,𝑠𝑠 = 1: Spot 𝑛𝑛 is empty in scenario 𝑠𝑠;

• Binary variable 𝑦𝑦𝑛𝑛,𝑠𝑠
• 𝑦𝑦𝑛𝑛,𝑠𝑠 = 0: In scenario 𝑠𝑠, do not park in spot n;
• 𝑦𝑦𝑛𝑛,𝑠𝑠 = 1: In scenario 𝑠𝑠, park in spot n;

• Variable 𝑐𝑐𝑠𝑠: Cost of scenario 𝑠𝑠

• Variable 𝑝𝑝𝑠𝑠: Probability of scenario 𝑠𝑠. 𝑝𝑝𝑠𝑠 = ∏𝑛𝑛=1
𝑁𝑁 (𝑝𝑝 ⋅ 𝛿𝛿𝑛𝑛,𝑠𝑠 + 1 − 𝑝𝑝 1 − 𝛿𝛿𝑛𝑛,𝑠𝑠 )

• MILP model:
min�

𝑠𝑠

𝑐𝑐𝑠𝑠 ⋅ 𝑝𝑝𝑠𝑠

s. t.

𝑐𝑐𝑠𝑠 = �
𝑛𝑛=1

𝑁𝑁

𝑦𝑦𝑛𝑛,𝑠𝑠 ⋅ 𝑛𝑛 + 1 −�
𝑛𝑛=1

𝑁𝑁

𝑦𝑦𝑛𝑛,𝑠𝑠 ⋅ 𝑐𝑐, ∀𝑠𝑠 ∈ 𝑆𝑆

𝑦𝑦𝑛𝑛,𝑠𝑠 ≤ 𝛿𝛿𝑛𝑛,𝑠𝑠 ,∀1 ≤ 𝑛𝑛 ≤ 𝑁𝑁, 𝑠𝑠 ∈ 𝑆𝑆

�
𝑛𝑛=1

𝑁𝑁

𝑦𝑦𝑛𝑛,𝑠𝑠 ≤ 1, ∀𝑠𝑠 ∈ 𝑆𝑆

𝑦𝑦𝑛𝑛,𝑠𝑠 = 𝑦𝑦𝑛𝑛,𝑠𝑠′ , ∀1 ≤ 𝑛𝑛 ≤ 𝑁𝑁𝑠𝑠,𝑠𝑠′
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑠𝑠, 𝑠𝑠𝑠 ∈ 𝑆𝑆
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Stochastic Programming

p

p

p

p

p

p

p

1-p 1-p

1-p

1-p

1-p
1-p

1-p

…

…

…

…
…

…

…

…

𝑛𝑛 = 𝑁𝑁 𝑛𝑛 = 𝑁𝑁 − 1 𝑛𝑛 = 𝑁𝑁 − 2

p

p

p

p

1-p 1-p

1-p
1-p

…
…

…

…

…

𝑛𝑛 = 𝑁𝑁 𝑛𝑛 = 𝑁𝑁 − 1 𝑛𝑛 = 𝑁𝑁 − 2

…

“Keep driving anyway”

“Park when the farthest spot is available”
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min�
𝑠𝑠

𝑐𝑐𝑠𝑠 ⋅ 𝑝𝑝𝑠𝑠

s.t.

𝑐𝑐𝑠𝑠 = �
𝑛𝑛=1

𝑁𝑁

𝑦𝑦𝑛𝑛,𝑠𝑠 ⋅ 𝑛𝑛 + 1 −�
𝑛𝑛=1

𝑁𝑁

𝑦𝑦𝑛𝑛,𝑠𝑠 ⋅ 𝑐𝑐, ∀𝑠𝑠 ∈ 𝑆𝑆

𝑦𝑦𝑛𝑛,𝑠𝑠 ≤ 𝛿𝛿𝑛𝑛,𝑠𝑠 ,∀1 ≤ 𝑛𝑛 ≤ 𝑁𝑁, 𝑠𝑠 ∈ 𝑆𝑆

�
𝑛𝑛

𝑦𝑦𝑛𝑛,𝑠𝑠 ≤ 1, ∀𝑠𝑠 ∈ 𝑆𝑆

𝑦𝑦𝑛𝑛,𝑠𝑠 = 𝑦𝑦𝑛𝑛,𝑠𝑠′ , ∀1 ≤ 𝑛𝑛 ≤ 𝑁𝑁𝑠𝑠,𝑠𝑠′
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑠𝑠, 𝑠𝑠𝑠 ∈ 𝑆𝑆

Stochastic Programming

𝑵𝑵 = 𝟑𝟑, 𝒑𝒑 = 𝟎𝟎.𝟔𝟔, 𝒄𝒄 = 𝟒𝟒

𝑦𝑦𝑛𝑛,𝑠𝑠 = 0: In scenario 𝑠𝑠, do not park in spot n;
𝑦𝑦𝑛𝑛,𝑠𝑠 = 1: In scenario 𝑠𝑠, park in spot n;

𝑠𝑠 = 1 𝑠𝑠 = 2 𝑠𝑠 = 3 𝑠𝑠 = 4 𝑠𝑠 = 5 𝑠𝑠 = 6 𝑠𝑠 = 7 𝑠𝑠 = 8

𝛿𝛿𝑛𝑛,𝑠𝑠 𝑦𝑦𝑛𝑛,𝑠𝑠 𝛿𝛿𝑛𝑛,𝑠𝑠 𝑦𝑦𝑛𝑛,𝑠𝑠 𝛿𝛿𝑛𝑛,𝑠𝑠 𝑦𝑦𝑛𝑛,𝑠𝑠 𝛿𝛿𝑛𝑛,𝑠𝑠 𝑦𝑦𝑛𝑛,𝑠𝑠 𝛿𝛿𝑛𝑛,𝑠𝑠 𝑦𝑦𝑛𝑛,𝑠𝑠 𝛿𝛿𝑛𝑛,𝑠𝑠 𝑦𝑦𝑛𝑛,𝑠𝑠 𝛿𝛿𝑛𝑛,𝑠𝑠 𝑦𝑦𝑛𝑛,𝑠𝑠 𝛿𝛿𝑛𝑛,𝑠𝑠 𝑦𝑦𝑛𝑛,𝑠𝑠

𝑛𝑛 = 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 0

𝑛𝑛 = 2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

𝑛𝑛 = 3 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0

Result

p

p

p

p

p

p

p

1-p 1-p

1-p

1-p

1-p
1-p

1-p

𝑛𝑛 = 3 𝑛𝑛 = 2 𝑛𝑛 = 1



• Recursive backtracking

• State space:

𝑛𝑛, 𝑖𝑖 |1 ≤ 𝑛𝑛 ≤ 𝑁𝑁, 𝑖𝑖 ∈ 0,1 + {(0,1)} + {Parked}

𝑖𝑖 = 0: Cannot park ∶, 𝑖𝑖 = 1: Can park

• Action space:

𝐴𝐴𝑛𝑛,0 = {keep looking}, 𝐴𝐴𝑛𝑛,1 = {Park, Keep looking}, 
𝐴𝐴0,1 = {Park}

• Transition probabilities: 
𝑃𝑃 𝑛𝑛, 0 , keep looking, 𝑛𝑛 − 1,1 = 𝑝𝑝, 

𝑃𝑃 𝑛𝑛, 0 , keep looking, 𝑛𝑛 − 1,0 = 1 − 𝑝𝑝,

𝑃𝑃 𝑛𝑛, 1 , keep looking, 𝑛𝑛 − 1,1 = 𝑝𝑝, 

𝑃𝑃 𝑛𝑛, 1 , keep looking, 𝑛𝑛 − 1,0 = 1 − 𝑝𝑝, 
𝑃𝑃 𝑛𝑛, 1 , park, parked = 1

𝑃𝑃 1,1 , keep looking, (0,1) = 1
𝑃𝑃 1,0 , keep looking, (0,1) = 1

17

Markov Decision Process

N 2 1 0
Destination

Free street parking Parking lot

• Direct cost: 𝑅𝑅 𝑛𝑛, 1 , Park, Parked = 𝑛𝑛, 𝑅𝑅 0,1 , Park, Parked = 𝑐𝑐

• 𝑓𝑓𝑛𝑛,𝑖𝑖: Optimal expected cost starting from state 𝑛𝑛, 𝑖𝑖

• Boundary condition: 𝑓𝑓0 = 𝑐𝑐

• Recursive optimality condition:
𝑓𝑓𝑛𝑛,0 = 𝑝𝑝 ⋅ 𝑓𝑓𝑛𝑛−1,1 + 1 − 𝑝𝑝 ⋅ 𝑓𝑓𝑛𝑛−1,0

𝑓𝑓𝑛𝑛,1 = min{𝑛𝑛,𝑝𝑝 ⋅ 𝑓𝑓𝑛𝑛−1,1 + 1 − 𝑝𝑝 ⋅ 𝑓𝑓𝑛𝑛−1,0}

Parked

Cannot park

Can park

Keep looking
Park

States:

Actions:

N N-1 2 1 0

𝑅𝑅 = 𝑁𝑁

𝑅𝑅 = 𝑁𝑁 − 1

𝑅𝑅 = 𝑐𝑐
𝑅𝑅 = 1

𝑅𝑅 = 2𝑃𝑃 = 𝑝𝑝

𝑃𝑃 = 1 − 𝑝𝑝 𝑃𝑃 = 𝑝𝑝

𝑃𝑃 = 1 − 𝑝𝑝

𝑃𝑃 = 1

𝑃𝑃 = 1



18

Markov Decision Process

𝑵𝑵 = 𝟑𝟑, 𝒑𝒑 = 𝟎𝟎.𝟔𝟔, 𝒄𝒄 = 𝟒𝟒

𝑓𝑓𝑛𝑛,0 = 𝑝𝑝 ⋅ 𝑓𝑓𝑛𝑛−1,1 + 1 − 𝑝𝑝 ⋅ 𝑓𝑓𝑛𝑛−1,0

𝑓𝑓𝑛𝑛,1 = min{ 𝑛𝑛, 𝑝𝑝 ⋅ 𝑓𝑓𝑛𝑛−1,1 + 1 − 𝑝𝑝 ⋅ 𝑓𝑓𝑛𝑛−1,0}

Optimal cost at parking spot n with the spot occupied -

Optimal cost at parking spot n with the spot empty -

Destination

Free street parking Parking lot

2 1 03

𝑓𝑓1,0 = 𝑐𝑐 = 𝟒𝟒

𝑓𝑓1,1 = min 𝟏𝟏,𝟒𝟒 = 𝟏𝟏

𝑓𝑓2,0 = 0.6 × 𝑓𝑓1,1 + 0.4 × 𝑓𝑓1,0
= 0.6 × 𝟏𝟏 + 0.4 × 𝟒𝟒 = 𝟐𝟐.𝟐𝟐

𝑓𝑓2,1 = min{𝟐𝟐,𝟐𝟐.𝟐𝟐} = 𝟐𝟐

𝑓𝑓3,0 = 0.6 × 𝑓𝑓2,1 + 0.4 × 𝑓𝑓2,0
= 0.6 × 𝟐𝟐 + 0.4 × 𝟐𝟐.𝟐𝟐 = 𝟐𝟐.𝟎𝟎𝟎𝟎

𝑓𝑓3,1 = min{𝟑𝟑,𝟐𝟐.𝟎𝟎𝟎𝟎} = 𝟐𝟐.𝟎𝟎𝟎𝟎

To park To keep looking

To park To parkTo keep looking
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Stochastic Programming
• Look ahead into future uncertainty with flexible form:

• Relationship between current stage decision and 
next stage behaviors can be described with 
polytopes

• Reasonable number of stages (scenarios)
• Finite horizon

Markov Decision Process
• Look ahead into future uncertainty with recursive 

structure:
• Has state representation and corresponding 

Markovian behavior

• Reasonable number of states
• Can deal with infinite horizon dynamics

For 𝑡𝑡 = 1, … ,𝑇𝑇

𝑣𝑣 𝑠𝑠𝑡𝑡 = max
𝑎𝑎𝑡𝑡

𝑓𝑓 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 + 𝛾𝛾 �
𝑠𝑠𝑡𝑡+1∈𝑆𝑆

𝑃𝑃 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 𝑣𝑣(𝑠𝑠𝑡𝑡+1)

𝑣𝑣 𝑠𝑠𝑇𝑇 = 𝑉𝑉𝑇𝑇

𝑡𝑡: Stages
𝑠𝑠: States

min
action0

+
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑡𝑡

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘0 + 𝐸𝐸(�
𝑡𝑡=1

𝑇𝑇

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑡𝑡 ,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑦𝑦𝑡𝑡 )Static
Exhaustive

Dynamic
Recursive

min
𝑥𝑥,𝑦𝑦,𝑧𝑧

�
𝑤𝑤∈𝑊𝑊

𝑝𝑝𝑤𝑤 ⋅�
𝑡𝑡=1

𝑇𝑇

𝑓𝑓𝑤𝑤,𝑡𝑡(𝑥𝑥𝑤𝑤,𝑡𝑡 ,𝑦𝑦𝑤𝑤,𝑡𝑡)

s. t. 𝑔𝑔𝑤𝑤,𝑡𝑡 𝑥𝑥𝑤𝑤 ,𝑦𝑦𝑤𝑤 ≤ 0, 𝑤𝑤 ∈ 𝑊𝑊, 𝑡𝑡 = 0, 1, … ,𝑇𝑇
𝑍𝑍𝑤𝑤,𝑤𝑤′,𝑡𝑡 ⇔ 𝐻𝐻𝑡𝑡 𝑌𝑌𝑤𝑤 , (𝑤𝑤,𝑤𝑤′, 𝑡𝑡) ∈ 𝑆𝑆𝑃𝑃𝑁𝑁

𝑍𝑍𝑤𝑤,𝑤𝑤′,𝑡𝑡
𝑥𝑥𝑤𝑤,𝑡𝑡 = 𝑥𝑥𝑤𝑤′,𝑡𝑡
𝑦𝑦𝑤𝑤,𝑡𝑡 = 𝑦𝑦𝑤𝑤′,𝑡𝑡

∨ 𝑍𝑍𝑤𝑤,𝑤𝑤′,𝑡𝑡 , 𝑤𝑤,𝑤𝑤′, 𝑡𝑡 ∈ 𝑆𝑆𝑃𝑃𝑁𝑁

𝑥𝑥𝑤𝑤,𝑡𝑡 = 𝑥𝑥𝑤𝑤′,𝑡𝑡, 𝑦𝑦𝑤𝑤,𝑡𝑡 = 𝑦𝑦𝑤𝑤′,𝑡𝑡 , 𝑤𝑤,𝑤𝑤′, 𝑡𝑡 ∈ 𝑆𝑆𝑃𝑃𝑥𝑥



Approximate 
Dynamic ProgrammingReinforcement learning

Temporal difference learning

Markov Decision Process

Random turn-out with 
Markovian property
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Dynamic Programming

Stochastic 
programming

Hard to describe 
explicitly and exactly

Linear Programming

Policy Iteration

Value Iteration

Algorithmic tools for 
infinite horizon cases

Markov Chain

Things to cover

State representation

Extremely large 

Endogenous 
uncertainty

Exogenous 
uncertainty



Infinite horizon Markov Decision Process – to make a maintenance decision

• Consider a machine that is either running or is broken. 

• If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0. 

• Purpose: find the best action for each state

• State space 𝑆𝑆 = {Working, Broken}

• Action space𝐴𝐴(current state): 𝐴𝐴 Working = {Maintenance, Wait}, 𝐴𝐴 Broken = {Replace, Repair}

• Transition probabilities𝑃𝑃(current state, action, next state): as shown in the graph

• Direct reward𝑅𝑅(current state, action): −𝐶𝐶 action + E gross profit action

• Discount factor 𝛾𝛾 = 0.8

21

Working Broken
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Broken
Replace 150

Repair 40



• Consider a machine that is either running or is broken. 

• If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0. 

• Purpose: find the best action for each state

𝑣𝑣 current state = max
action∈{Actions}

{−𝐶𝐶 action + E gross profit action + 𝛾𝛾E 𝑣𝑣 next state action }
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Working Broken

0.6

0.4

1 0

0.3

0.6
0.4

0.7

Optimality condition

States Actions C (action)

Working
Maintenance 20

Wait 0

Broken
Replace 150

Repair 40

Infinite horizon Markov Decision Process – to make a maintenance decision



• Consider a machine that is either running or is broken. 

• If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0. 

• Let  the optimal value of Working and Brokenbe  𝑣𝑣 𝑊𝑊 and  𝑣𝑣 𝐵𝐵 .

• 𝑣𝑣 𝑊𝑊 = max −20 + 0.6 0.8𝑣𝑣 𝑊𝑊 + 100 + 0.4 0.8𝑣𝑣 𝐵𝐵 , 0.3 0.8𝑣𝑣 𝑊𝑊 + 100 + 0.7 0.8𝑣𝑣 𝐵𝐵

• 𝑣𝑣 𝐵𝐵 = max{−150 + 0.8𝑣𝑣 𝑊𝑊 + 100 ,−40 + 0.6 0.8𝑣𝑣 𝑊𝑊 + 100 + 0.4 0.8𝑣𝑣 𝐵𝐵 }
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Infinite horizon Markov Decision Process – to make a maintenance decision
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• Consider a machine that is either running or is broken. 

• If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0. 

• Let  the optimal value of Working and Brokenbe  𝑣𝑣 𝑊𝑊 and  𝑣𝑣 𝐵𝐵 .

• 𝑣𝑣 𝑊𝑊 = max −20 + 0.6 0.8𝑣𝑣 𝑊𝑊 + 100 + 0.4 0.8𝑣𝑣 𝐵𝐵 , 0.3 0.8𝑣𝑣 𝑊𝑊 + 100 + 0.7 0.8𝑣𝑣 𝐵𝐵

 𝑣𝑣 𝑊𝑊 = max{0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40, 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30}

• 𝑣𝑣 𝐵𝐵 = max{−150 + 0.8𝑣𝑣 𝑊𝑊 + 100 ,−40 + 0.6 0.8𝑣𝑣 𝑊𝑊 + 100 + 0.4 0.8𝑣𝑣 𝐵𝐵 }

 𝑣𝑣 𝐵𝐵 = max{0.8𝑣𝑣 𝑊𝑊 − 50, 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20}
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Infinite horizon Markov Decision Process – to make a maintenance decision
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• Consider a machine that is either running or is broken. 

• If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0. 

• Let  the optimal value of Working and Brokenbe  𝑣𝑣 𝑊𝑊 and  𝑣𝑣 𝐵𝐵 .   min𝑣𝑣 𝑊𝑊 + 𝑣𝑣(𝐵𝐵)
• 𝑣𝑣 𝑊𝑊 = max{0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40, 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30}  𝑣𝑣 𝑊𝑊 ≥ 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40, 𝑣𝑣 𝑊𝑊 ≥ 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30}

• 𝑣𝑣 𝐵𝐵 = max{0.8𝑣𝑣 𝑊𝑊 − 50, 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20}  𝑣𝑣 𝐵𝐵 ≥ 0.8𝑣𝑣 𝑊𝑊 − 50, 𝑣𝑣 𝐵𝐵 ≥ 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20}
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Linear Programming

Infinite horizon Markov Decision Process – to make a maintenance decision
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• Consider a machine that is either running or is broken. 

• If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0. 

• Let  the optimal value of Working and Brokenbe  𝑣𝑣 𝑊𝑊 and  𝑣𝑣 𝐵𝐵 .   min𝑣𝑣 𝑊𝑊 + 𝑣𝑣(𝐵𝐵)
• 𝑣𝑣 𝑊𝑊 = max{0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40, 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30}  𝑣𝑣 𝑊𝑊 ≥ 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40, 𝑣𝑣 𝑊𝑊 ≥ 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30}

• 𝑣𝑣 𝐵𝐵 = max{0.8𝑣𝑣 𝑊𝑊 − 50, 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20}  𝑣𝑣 𝐵𝐵 ≥ 0.8𝑣𝑣 𝑊𝑊 − 50, 𝑣𝑣 𝐵𝐵 ≥ 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20}
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𝒗𝒗∗ = arg min
𝒗𝒗
𝟏𝟏T𝒗𝒗

s.t. 𝒗𝒗 ≽ 𝐻𝐻𝛿𝛿𝒗𝒗, ∀𝜹𝜹 ∈ 𝛥𝛥 𝛥𝛥 = 𝐴𝐴 1 × ⋯× 𝐴𝐴( 𝑆𝑆 ) is policy space

For 𝒗𝒗 that satisfy 𝒗𝒗 ≽ 𝐻𝐻𝛿𝛿𝒗𝒗, applying the operator 𝐻𝐻𝛿𝛿 again gives 𝐻𝐻𝛿𝛿𝒗𝒗 ≽ 𝐻𝐻𝛿𝛿(𝐻𝐻𝛿𝛿𝒗𝒗), therefore
𝒗𝒗 ≽ 𝐻𝐻𝛿𝛿𝒗𝒗 ≽ ⋯ ≽ lim

𝑛𝑛→∞
𝐻𝐻𝛿𝛿
𝑛𝑛𝒗𝒗 =𝒗𝒗∗  𝒗𝒗∗is the element-wise minimum

𝒗𝒗∗ = arg min
𝒗𝒗
𝒘𝒘T𝒗𝒗

s.t. 𝒗𝒗 ≽ 𝐻𝐻𝛿𝛿𝒗𝒗, ∀𝜹𝜹 ∈ 𝛥𝛥
where 𝒘𝒘 is any positive weight vector

General form of the previous problem:

𝛥𝛥 = 𝐴𝐴 1 × ⋯× 𝐴𝐴( 𝑆𝑆 ) is policy space

LP special property



• Consider a machine that is either running or is broken. 

• If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0. 

• Let  the optimal value of Working and Brokenbe  𝑣𝑣 𝑊𝑊 and  𝑣𝑣 𝐵𝐵 .     

• 𝑣𝑣 𝑊𝑊 = max{0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40, 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30}

• 𝑣𝑣 𝐵𝐵 = max{0.8𝑣𝑣 𝑊𝑊 − 50, 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20}
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min40𝛼𝛼 𝑊𝑊,𝑀𝑀𝑀𝑀 + 30𝛼𝛼 𝑊𝑊,𝑊𝑊𝑊𝑊 − 50𝛼𝛼(𝐵𝐵,𝑅𝑅𝑅𝑅) + 20𝛼𝛼(𝐵𝐵,𝑅𝑅𝑅𝑅)
s.t. 0.52𝛼𝛼 𝑊𝑊,𝑀𝑀𝑀𝑀 + 0.76𝛼𝛼 𝑊𝑊,𝑊𝑊𝑊𝑊 − 0.8𝛼𝛼 𝐵𝐵,𝑅𝑅𝑅𝑅 − 0.48𝛼𝛼 𝐵𝐵,𝑅𝑅𝑅𝑅 = 1
−0.32𝛼𝛼 𝑊𝑊,𝑀𝑀𝑀𝑀 − 0.56𝛼𝛼 𝑊𝑊,𝑊𝑊𝑊𝑊 + 𝛼𝛼 𝐵𝐵,𝑅𝑅𝑅𝑅 + 0.68𝛼𝛼 𝐵𝐵,𝑅𝑅𝑅𝑅 = 1

𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 > 0: The action is chosen for the state
𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0: The action is not chosen for the state

LP dual
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• Consider a machine that is either running or is broken. 

• If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0. 

• Let  the optimal value of Working and Brokenbe  𝑣𝑣 𝑊𝑊 and  𝑣𝑣 𝐵𝐵 .     

• 𝑣𝑣 𝑊𝑊 = max{0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40, 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30}

• 𝑣𝑣 𝐵𝐵 = max{0.8𝑣𝑣 𝑊𝑊 − 50, 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20}
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min40𝛼𝛼 𝑊𝑊,𝑀𝑀𝑀𝑀 + 30𝛼𝛼 𝑊𝑊,𝑊𝑊𝑊𝑊 − 50𝛼𝛼(𝐵𝐵,𝑅𝑅𝑅𝑅) + 20𝛼𝛼(𝐵𝐵,𝑅𝑅𝑅𝑅)
s.t. 0.52𝛼𝛼 𝑊𝑊,𝑀𝑀𝑀𝑀 + 0.76𝛼𝛼 𝑊𝑊,𝑊𝑊𝑊𝑊 − 0.8𝛼𝛼 𝐵𝐵,𝑅𝑅𝑅𝑅 − 0.48𝛼𝛼 𝐵𝐵,𝑅𝑅𝑅𝑅 = 1
−0.32𝛼𝛼 𝑊𝑊,𝑀𝑀𝑀𝑀 − 0.56𝛼𝛼 𝑊𝑊,𝑊𝑊𝑊𝑊 + 𝛼𝛼 𝐵𝐵,𝑅𝑅𝑅𝑅 + 0.68𝛼𝛼 𝐵𝐵,𝑅𝑅𝑅𝑅 = 1
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𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 > 0: The action is chosen for the state
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• Consider a machine that is either running or is broken. 

• If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0. 

• Let  the optimal value of Working and Brokenbe  𝑣𝑣 𝑊𝑊 and  𝑣𝑣 𝐵𝐵 .     

• 𝑣𝑣 𝑊𝑊 = max{0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40, 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30}

• 𝑣𝑣 𝐵𝐵 = max{0.8𝑣𝑣 𝑊𝑊 − 50, 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20}
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• Consider a machine that is either running or is broken. 

• If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0. 

• Let  the optimal value of Working and Brokenbe  𝑣𝑣 𝑊𝑊 and  𝑣𝑣 𝐵𝐵 .     

• 𝑣𝑣 𝑊𝑊 = max{0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40, 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30}

• 𝑣𝑣 𝐵𝐵 = max{0.8𝑣𝑣 𝑊𝑊 − 50, 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20}
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𝑣𝑣 𝐵𝐵 , 𝑣𝑣 𝑊𝑊

𝑣𝑣 𝑊𝑊 ← max{0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40, 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30}
𝑣𝑣 𝐵𝐵 ← max{0.8𝑣𝑣 𝑊𝑊 − 50, 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20}

Initialize

Value Iteration
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• Consider a machine that is either running or is broken. 

• If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0. 

• Let  the optimal value of Working and Brokenbe  𝑣𝑣 𝑊𝑊 and  𝑣𝑣 𝐵𝐵 .     

• 𝑣𝑣 𝑊𝑊 = max{0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40, 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30}

• 𝑣𝑣 𝐵𝐵 = max{0.8𝑣𝑣 𝑊𝑊 − 50, 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20}
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𝑣𝑣 𝐵𝐵 , 𝑣𝑣 𝑊𝑊

𝑣𝑣 𝑊𝑊 ← max{0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40, 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30}
𝑣𝑣 𝐵𝐵 ← max{0.8𝑣𝑣 𝑊𝑊 − 50, 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20}

Initialize
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• Consider a machine that is either running or is broken. 

• If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0. 

• Let  the optimal value of Working and Brokenbe  𝑣𝑣 𝑊𝑊 and  𝑣𝑣 𝐵𝐵 .     

• 𝑣𝑣 𝑊𝑊 = max{0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40, 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30}

• 𝑣𝑣 𝐵𝐵 = max{0.8𝑣𝑣 𝑊𝑊 − 50, 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20}
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• Consider a machine that is either running or is broken. 

• If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0. 

34
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𝑣𝑣 𝑊𝑊 = 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40, 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30
𝑣𝑣 𝐵𝐵 = 0.8𝑣𝑣 𝑊𝑊 − 50, 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20

Policy:
(Maintenance, Repair) 𝑣𝑣 𝐵𝐵 = 148, 𝑣𝑣 𝑊𝑊 = 168

𝑣𝑣 𝑊𝑊 ← max{0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40 = 168, 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30 = 153.2}
𝑣𝑣 𝐵𝐵 ← max{0.8𝑣𝑣 𝑊𝑊 − 50 = 84.4, 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20 = 148}
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• Consider a machine that is either running or is broken. 

• If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0. 
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𝑣𝑣 𝑊𝑊 = 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40, 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30
𝑣𝑣 𝐵𝐵 = 0.8𝑣𝑣 𝑊𝑊 − 50, 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20

Policy:
(Maintenance, Repair) 𝑣𝑣 𝐵𝐵 = 148, 𝑣𝑣 𝑊𝑊 = 168

𝑣𝑣 𝑊𝑊 ← max{0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 40 = 168, 0.56𝑣𝑣 𝐵𝐵 + 0.24𝑣𝑣(𝑊𝑊) + 30 = 153.2}
𝑣𝑣 𝐵𝐵 ← max{0.8𝑣𝑣 𝑊𝑊 − 50 = 84.4, 0.32𝑣𝑣 𝐵𝐵 + 0.48𝑣𝑣(𝑊𝑊) + 20 = 148}
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Approximate 
Dynamic ProgrammingReinforcement learning

Temporal difference learning

Markov Decision Process

Random turn-out with 
Markovian property
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Dynamic Programming

Stochastic 
programming

Hard to describe 
explicitly and exactly

Linear Programming

Policy Iteration

Value IterationMarkov Chain

Things to cover

State representation

Extremely large 

Endogenous 
uncertainty

Exogenous 
uncertainty

Algorithmic tools for 
infinite horizon cases

• Markov Decision Process is the superstructure of Markov Chains on action space;
• Markov Decision Process reduces to Markov Chain when the actions are fixed.



• Consider a machine that is either running or is broken. 

• If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0. 
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Working Broken

0.6

0.4

0.6
0.4

Working Broken

Working 0.6 0.4

Broken 0.6 0.4

Transition probability matrix Stationary probability:

Pr 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 , Pr 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ⋅ 0.6, 0.4
0.6, 0.4 = Pr 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 , Pr 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

Pr 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 + Pr 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1

Pr 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 0.6, Pr 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 0.4
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Markov Decision Process

Random turn-out with 
Markovian property
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Reinforcement learning – simulation based optimization
Temporal difference learning: update state-action value function after every interaction with the environment.

Recall: Optimal condition𝑣𝑣 𝑠𝑠 = max
𝑎𝑎∈𝐴𝐴𝑠𝑠

{E𝑠𝑠′(𝑅𝑅 𝑠𝑠, 𝑎𝑎, 𝑠𝑠′ |𝑎𝑎) + 𝛾𝛾E𝑠𝑠′(𝑣𝑣(𝑠𝑠′)|𝑎𝑎)} ,∀𝑠𝑠 ∈ 𝑆𝑆

Q learning:
• Look-up table of 𝑸𝑸 𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕
• Parameterize 𝑸𝑸 𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕 with basis functions and learn the parameters via neural networks

Agent

Environment

𝒂𝒂𝒕𝒕 = max
𝑎𝑎∈𝐴𝐴𝑠𝑠𝑡𝑡

𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)𝒔𝒔𝒕𝒕+𝟏𝟏,𝑹𝑹𝒕𝒕+𝟏𝟏

1. Take action based on current belief of 𝑄𝑄

𝑸𝑸𝒏𝒏𝒏𝒏𝒏𝒏 𝒔𝒔𝒕𝒕,𝒂𝒂𝒕𝒕  1 − 𝛼𝛼 ⋅ 𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 + 𝛼𝛼 ⋅ (𝑅𝑅𝑡𝑡+1 + 𝛾𝛾 ⋅ max
𝑎𝑎∈𝐴𝐴𝑠𝑠𝑡𝑡+1

(𝑄𝑄𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠𝑡𝑡+1,𝑎𝑎𝑡𝑡+1 ))

2. Feedback

3. Update belief

Learning 
rate

Discount 
factor

0. Initialized the belief of 𝑄𝑄

Learning 
rate
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atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

Deep Q Networks

High 
dimensional 

input

Convolutional Neural Network

Mnih et al., 2013

Atari game 
screenshots



Random turn-out with 
Markovian property
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Dynamic Programming

Markov Decision Process

Approximate 
Dynamic Programming

Stochastic 
programming

Reinforcement learning

Hard to describe 
explicitly and 
exactly

Linear Programming

Policy Iteration

Value IterationMarkov Chain

Temporal difference learning

Summary

State representation

Extremely large 

Endogenous 
uncertainty

Exogenous 
uncertainty

Algorithmic tools for 
infinite horizon cases



• Semi-Markov Decision Process - Continuous Markov Chain
• Partially observed Markov Decision Process - Hidden Markov Chain
• Time-inhomogeneous behaviors
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Further extension and recommended resources

Puterman, Martin L. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 
2014.
Bertsekas, Dimitri P., et al. Dynamic programming and optimal control. Vol. 1. No. 2. Belmont, MA: Athena 
scientific, 1995.
Boucherie, Richard J., and Nico M. Van Dijk, eds. Markov decision processes in practice. Springer International 
Publishing, 2017.
Alfa, Attahiru Sule, and Barbara Haas Margolius. "Two classes of time-inhomogeneous Markov chains: Analysis 
of the periodic case." Annals of Operations Research 160.1 (2008): 121-137.
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