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Markov?

A. A Mapkos. "PacnpocTtpaHeHue 3aKoHa 6onbLumx Ymcen
Ha BeNMYMHbI, 3aBUCALIME Opyr oT gpyra". "MsBecTus
Pdusmko-mMaTemMaTnyeckoro obLuectea npu KasaHckoM
yHuBepcuteTe", 2-9 cepus, ToM 19, cT. 135-156, 1906

A. A Markov. "Spreading the law of large numbers to
quantities that depend on each other." "|zvestiya of the
Physico-Mathematical Society at the Kazan University",
2-nd series, volume 15, art. 135-156, 1906

Andrey Andreyevich Markov
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Why - Wide applications

*  White, Douglas J. "A survey of applications of Markov decision
processes." Journal of the operational research society 44.11
(1993): 1073-1096.

TasLE |. Application areas

Supply Chain

Maintenance

| Population harvesting (5)

2 Agriculiure (5) M I I I t
3 Water resources (15) anage en
4 Inspection, maintenance and repair (18)

5 Purchasing, inventory and production (14)

[ Finance and investment (9)

7 Queues (6)

8 Sales promotion (4)

9 Search 3)

10 Maotor insurance claims (2)
11 Owerbooking (5) =
12 Epidemics 2)

5 Con Finance
14 Sports i2)

15 Patient admissions in

16 Location (1)

17 Design of experiments (1)

18 General (5)

*  Boucherie, Richard J., and Nico M. Van Dijk, eds. Markov
decision processes in practice. Springer International
Publishing, 2017.

Puct. G Tho Transportation Healthcare

Part II: Healthcare

Part III: Transportation

Part IV: Production

Part V: Communications
Part VI: Financial Modeling

:
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MDP x PSE

» Saucedo, Victor M,, and M. Nazmul Karim. "On-line optimization of stochastic processes using Markov Decision
Processes." Computers & chemical engineering 20 (1996): S701-S706.

« Tamir, Abraham. Applications of Markov chains in chemical engineering. Elsevier, 1998.

« Wongthatsanekorn, Wuthichai & Realff, Matthew J. & Ammons, Jane C., 2010. "Multi-time scale Markov decision
process approach to strategic network growth of reverse supply chains," Omega, Elsevier, vol. 38(1-2), pages
20-32, February.

« Wong, Wee Chin, and Jay H. Lee. "Fault detection and diagnosis using hidden Markov disturbance models."
Industrial & Engineering Chemistry Research 49.17 (2010): 7901-7908.

« Martagan, Tugce, and Ananth Krishnamurthy. "Control and Optimization of Bioprocesses Using Markov Decision
Process." /IE Annual Conference. Proceedings. Institute of Industrial and Systems Engineers (IISE), 2012.

* Goel, Vikas, and Kevin C. Furman. "Markov decision process-based support tool for reservoir development
planning." U.S. Patent No. 8,775,347. 8 Jul. 2014.

 Kim, Jong Woo, et al. "Optimal scheduling of the maintenance and improvement for water main system using
Markov decision process.” /FAC-Papers OnLine 48.8 (2015): 379-384.
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How - Comparative demonstration

» Markov Decision Process is a less familiar tool to the PSE community for decision-
making under uncertainty.

» Stochastic programming is a more familiar tool to the PSE community for decision-
making under uncertainty.

* This talk will start from a comparative demonstration of these two, as a perspective
to introduce Markov Decision Process.

* Dupacova, J., & Sladky, K. (2002). Comparison of multistage stochastic programs with recourse and stochastic dynamic programs with discrete time. ZAMM-Journal of Applied
Mathematics and Mechanics/Zeitschrift fiir Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, 8§2(11-12), 753-765.
* Cheng, L., Subrahmanian, E., & Westerberg, A. W. (2004). A comparison of optimal control and stochastic programming from a formulation and computation perspective. Computers

& Chemical Engineering, 29(1), 149-164.
* Powell, W. B. (2019). A unified framework for stochastic optimization. European Journal of Operational Research, 275(3), 795-821.
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Things to cover

Comparison of finite horizon cases

- e e e e e e e e e e e e e e e e e e e

Dynamic Programming

2

Algorithmic tools for
infinite horizon cases

Linear Programming

v..

s N
Exogenous  Endogenous S o, | Markov Decision Process
uncertamnty uncertamnty -
Stochastic Markoysnpropertyl B [ Markov Chain ]
programming -

Random turn-out with & '

[ Reinforcement learning }<1:|

Temporal difference learnlng

Extremely large | | Hard to describe

explicitly and
exactly

Approximate
Dynamic Programming

Policy Iteration

Value lteration

:
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Things to cover

s A
Exogenous  Endogenous : 1S1
5 . g . - State representation | § Markov Decision Process
uncertamnty  uncertanty
. Random turn-out with Vel
Stochastic Markovian property

programming \ /

>

Multi-stage stochastic programming VS Finite-horizon Markov Decision Process

» Special properties, general formulations and applicable areas

* Intersection at an example problem

:
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HISTORY AND CONNECTIONS

Year MDP np (M)SP sP ChC On the theory of dynamic
1952 T . -
oo T oetmer—— programming. Proceedings
s o
1956 ¢ Bellman et al. atic alAcademyOf
1958 ® Bellman Sciences of the United Sitates
Ch
1960 ~ARFDeS-COODSr. g L /‘ ‘ of America 38.8 (1952): 716.
H dl _[)_a_-tit_.z_ig_ pp—— __[:V l
. , 1964 e - me—— rkovian Decision
Book: Dynamic THEORETICAL RESULTS _ p Indidna Univ. Math
P mmin d 1966 (Dempster, Kall, Prékopa, Wets) Richard Bellman Frocess, indiana Univ. Math.
rogramming an ’ J. 6 No. 4 (1957), 679-684
Markov Processes, 1960 1968 Yeinott Ross b ' ' '
1970 erman, : FIRST MONOGRAPHS
Ronald A Howard Hinderer
1972 Bather ® DECISION RULES ol o
1974 Hordijk (%f‘;’lf‘"" f‘i‘,’:tl;?fe”ar ) Sengupta, Vajda
1976 Bertsekas ® P g Kall )
1978 Bertsekas-Shreve
izzg SOFTWARE DEVELOPMENT
Los4 Whittle ®
1986 | @roem e p-Klein Haneveld ___
1988 Birge et al. _ 1
N Ermoliev-Wets (eds.)
1990 ¢ Varaiva-Wets Gassman(MSLIP)
1992 LARGE SCALE APPLICATIONS
1904 Puterman ;,EQQk_a_fngx ____________________
1996 L
1998 Semnott P
2000 ene o Takriti et al.

¢ ... seminal paper @ ... chapter in ® selected monograph
MDP ... Markov Decision Processes DP ... Dynamic Programming
(M)SP ... (Multistage) Stochastic Programming  ChC ... Chance-Constraints

Dupacova, J., & Sladky, K. (2002). Comparison of multistage stochastic programs with recourse and stochastic dynamic programs with discrete
c A P D Contor tar: Aivariced Prozess Declsloremoilig ;i/[rrelzl52]6\;11\/{;21(01141}’_711a21)0j;1;1§7{771265d Mathematics and Mechanics/Zeitschrift fiir Angewandte Mathematik und Mechanik: Applied Mathematics and 8



Stochastic Programming

FExogenous * Uncertainty parameter realizations are independent of decisions:

uncertainty Eg. Stock prices for individual investors, Oil/gas reserve amount of wells to be drilled,
Product demands for small business owners

 Uncertainty parameter realizations are influenced by decisions:

Endogenous S B
uncertainty * Type I Decisions impact the probability distributions.

Eg. Block trades by institutional investors causing stock price changes
* Type II: Decisions impact the observations.
E g. Shale gas reserve amount revealed upon drilling

c A P D Goel, Vikas, and Ignacio E. Grossmann. “A class of stochastic programs with decision dependent uncertainty.” Mathematical
Center for Advanced Process Decision-making programming 108.2-3 (2006): 355-394.



Stochastic Programming - Static & Exhaustive

Exogenous
uncertainty

Endogenous
uncertainty

General form
of multistage
stochastic

programming:

Non-anticipativity:
Consistent decision down to
the last shared time point of
two scenarios.

* Type II: Decisions impact the observations.

xm)}rzl Z Pw " ) fwi(Xw,eYwe) w:Scenarios; t: Stages
T wew t=1

St gwe(Xyw, yw) <0, weW,t=0,1,...,T

T

Zyw' e © He(Yy), (w,w',t) € SPy E

! ' Endogenous

[ Zuw' | non-anticipativity
H Xwe =Xwe |V(=Zy, ) (w,w',t) € SPy! disjunctions

: Ywit = Yw't i

|
' Exogenous
non-anticipativity

x: Continuous decision variables
y: Binary decision variables;
z: Binary indicating variables of scenario revelation

* Uncertainty parameter realizations are independent of decisions:
Eg. Stock prices, Oil/gas reserve amount, Product demands

* Uncertainty parameter realizations are influenced by decisions:

. Becisions. | opbikitee distebutions.

Scenario tree

Revealed after t=0 Revealed after t=1

6: Endogenous uncertainty

Revealed after t=2

:
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Apap, Robert M, and Ignacio E. Grossmann. "Models and computational strategies for multistage stochastic programming under
endogenous and exogenous uncertainties." Computers & Chemical Engineering 103 (2017): 233-274.
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Markov Decision Process - Dynamic & Recursive

State « The system (the entity to model) transitions among a set of finite states
representation Eg. A machine working, or broken

Random turn- out  Probability distributions only depend on the current state
with Markovian
property

General formof Fort=0,...T Transition diagram States:
.. . o 3 @ 9 remains uncertain
finite h0|.’|zon v(se) = max[f (s, ar) + z CEN . | t=0 i
MDP optimal t Ser1 .
condition v(sr) = Vr(sr) s @ o=9
t: Stages Actions:
s: States t=2 — Not to reveal 6

— Toreveal 0

:
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Stochastic Programming Markov Decision Process

* Look ahead into future uncertainty with flexible form: * Look ahead into future uncertainty with recursive
* Relationship between current stage decision and structure:
next stage behaviors can be described with * Has state representation and corresponding
constraints Markovian behavior
* Reasonable number of stages (scenarios) e Reasonable number of states
* Hnite horizon » Can deal with infinite horlzon dynamlcs
_7\;‘, e N B 9 2B = 0 2 = 2 % — o LL
min z iy © wat(xwt'ywt) Fort=1,..,T
wew
s. . gw‘t(xw,yW) <0, weW,t=0,1,..,T v(se) = HEX f(se,ae) +y Z P(st+1lst, ar)v(se+1)
Zyw e H (YY), (ww',t) €SP St+1€S
— ww',t t( ) ( ) N U(ST) — VT P
ZW,W ,t
Xwe =Xy e |V (Zyw' ) (w,w',t) € SPy t: Stages
Ywit = Yw't s: States
Xwt = X! trYwit = Yw' tr (w,w',t) € SP,
Static . min paybacky, + E ayback,(action,, uncertaint | Dynamic
: L am pay 0 pay t t Ye)) :
Exhaustive Ty 0 =1 | Recursive
L actiong !

:
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Solve a problem with both tools - parking problem

* You are driving to the destination from street parking spot A/ and you can :

observe whether parking spot nis empty only when arriving at the spot.

« By probability g, a spot is empty; By probability /-, a spot is : ﬁL
N
« The parking lot is always available with fee ¢ (>1).

» The inconvenience penalty of parking at street parking spot nis n.

Decision to make at spot n=]..,N

Park if possible OR Keep looking for closer spot

A‘I Destination

:
CA P D Center for Advanced Process Decision-making
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Stochastic Programming

Indicating parameter 6, ¢

*  Op,s = 1: Spot n is empty in scenario s;

Binary variable y;, ¢
*  Y¥ns = 0:Inscenario s, do not park in spot n;
*  Yns = l:Inscenario s, parkin spot n;

Variable c,: Cost of scenario s
Variable p,: Probability of scenario s. pg = [IN=1(P - 8ps + (1 — p)(1 — 8,5))
MILP model:

minz Cs * Ds

cost of
street cost of lot parking Vs€eS
parking

Park only when empty

Each scenario park at most one spot

Non-anticipativity constraints

“Keep driving anyway”
p
P I-p
p
p /-p /
I-p
p
I-p L I-p
p
/_p /
I

p
I-p £ 1
p
I—p /
7

:
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Stochastic Programming

Indicating parameter 6, ¢
* p,s = 0:Spot n is occupied in scenario s,
*  Op,s = 1:Spot n is empty in scenario s;

Binary variable y,,
*  Y¥ns = 0:Inscenario s, do not park in spot n;

*  ¥ns = 1l:Inscenario s, park in spot n;

Variable c,: Cost of scenario s
Variable p,: Probability of scenario s. ps = [IN=1(P - 8ns + (1 = p)(1 — Sps))
MILP model:

minz Cs * Ds

N

s. t

N N

Cs—zyns n+ 1—23}.”‘5 C, Vs €S
n=1 n=1

Yns < 6n,5;V1 <n<N,ses§

N

z Yns <1, VsEeS

n=1

Yns = Vns's Visn< Nspsa’rent; s,s' €S

“Keep driving anyway”
/ I-p
/ I-p ,0/
I-p
p
I-p 27 1
. p/
I

n=N n=N-1 n=N-2

“Park when the farthest spot is available”

I
I-p / I-p
P
l-p /
I

:
CA P D Center for Advanced Process Decision-making
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Stochastic Programming

minz Cs * Ds

S

st

N N
CS=ZyTL,S.n+ 1_zyn's - C, VsES
n=1 n=1

Yns < 0ps, VISN<N,s€S

z yTL,S S 1;

Vs€EeS

vVi<n< Nf:,rent, s,s' €S

N=3,p=0.6,c=4

s=1 s=2 S =

6n,s Yns 6n,s Yn,s 6n,s Yn,s

Yn,s

yTl,S

0
n=2 0 0 0 0
0

o -~ O
N

® ¥ns = 0:Inscenario s, do not parkin spot n;
! ¥ns = 1:Inscenario s, park in spot n;

f--- var y

dO U s W E DA s W N

WWWWwWwWwwwhNoNNNN0NN R RS R

@ o0 W N

LOWER

LEVEL

1.

=

e

000

.000
.000

.000
.000

UPPER

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

MARGINAL

-0.192

:
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o o ; Parking lot
Markov Decision Process

Recursive backtracking Y e A‘I Destination

N 2 1

State space:

Direct cost: R((n, 1), Park, Parked) =n, R((O,l), Park, Parked) =c

{(n, D1 <n < N,i€{0,1}}+ {(0,1)} + {Parked} * f,.:: Optimal expected cost starting from state (n, i)
i = 0: Cannot park :,i = 1: Can park

Boundary condition: f, = ¢

Action space:

Recursive optimality condition:
Ao = {keep looking}, 4, ; = {Park, Keep looking}, fao =P facii+ A =D) fu1o

Ao,y = {Park} faa=min{n,p- fu_11+ A —p) - fa_1,0}

Transition probabilities:

P((n,0), keep looking, (n — 1,1)) = p, States.

P((n, 0), keep looking, (n — 1,0)) = 1 —p, B Parked
P((n, 1), keep looking, (n — 1,1)) =p, . g::npc:riark
P((n, 1), keep looking, (n — 1,0)) =1-p,

P((n, 1), park, parked) =1 Actions:

— Keep looking

P((1,1), keep looking, (0,1)) = 1 —> Park

P((1,0), keep looking, (0,1)) = 1

!
CA P D Center for Advanced Process Decision-making 17



Markov Decision Process

Optimal cost at parking spot n with the spot occupied - f,o =P fr-11 + (1 =) * fu—10

Optimal cost at parking spot n with the spot empty - fan1 =min{ n, D fa11t A —D) fao10}
To park To keep looking

N=3,p=0.6,c=4

Free street parking Parking lot

3 2 1 0
f0=06Xf1+04Xf, f20=06Xf11+04Xf0 fio=c=4 Destination
=0.6 X2+ 0.4 x =2.08‘T=0.6><1+0.4><4= 'T:
f5,1 = min{3,2.08} = 2.08 fo1 = min{2,2.2} = fin =min{1,4} =1

To keep looking To park To park

:
CA P D Center for Advanced Process Decision-making 18



Stochastic Programming Markov Decision Process

* Look ahead into future uncertainty with flexible form: * Look ahead into future uncertainty with recursive
* Relationship between current stage decision and structure:
next stage behaviors can be described with * Has state representation and corresponding
polytopes Markovian behavior
* Reasonable number of stages (scenarios) e Reasonable number of states
* Hnite horizon » Can deal with infinite horlzon dynamlcs
o= g P P = p 2 -2 % N~ oD
min z Pw ° wat(xwt'ywt) Fort=1,...,T
wew
s. . gw‘t(xw,yW) <0, weW,t=0,1,..,T v(se) = HEX f(se,ae) +y Z P(st+1lst, ar)v(se+1)
Z, e e H(Y,,), ,w',t) € SP St+1€S
— > w,w',t t( ) (W w ) N U(ST) — VT <—
ZW,W ,t
Xwe =Xy e |V (Zyw' ) (w,w',t) € SPy t: Stages
Ywit = Yw't s: States
Xwt = X! trYwit = Yw' tr (w,w',t) € SP,
Static . min paybacky, + E ayback,(action,, uncertainty,)) ! Dynamic
: L am pay 0 pay t t Ye)) :
Exhaustive Ty 0 =1 | Recursive
L actiong !

:
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Things to cover

Markov Decision Process

Algorithmic tools for
infinite horizon cases

Linear Programming

.................................... ».. PO[ICY |tel'atI0n

Value lteration

:
CA P D Center for Advanced Process Decision-making
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Infinite horizon Markov Decision Process - to make a maintenance decision

Consider a machine that is either running or is broken.

* Purpose: find the best action for each state

 State space S = {Working, Broken}

If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0.

States Actions C(action)
Maintenance 20
Working
Wait 0
Replace 150
Broken
Repair 40

» Action space A(current state): A(Working) = {Maintenance, Wait}, A(Broken) = {Replace, Repair}

 Transition probabilities P (current state, action, next state): as shown in the graph

« Direct reward R (current state, action): —C (action) + E(gross profit|action)

 Discount factory = 0.8

—
CA P D Center for Advanced Process Decision-making
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Infinite horizon Markov Decision Process - to make a maintenance decision

» Consider a machine that is either running or is broken.

« If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0.

States Actions C(action)
Maintenance 20
’ Working _

Wait 0

________ Replace 150

Broken _
________ > Repair 40
* Purpose: find the best action for each state
v(current state) = max {—C(action) + E(gross profit|action) + yE(v(next state)|action)}

actione{Actions}

Optimality condition

:
CA P D Center for Advanced Process Decision-making
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Infinite horizon Markov Decision Process - to make a maintenance decision

» Consider a machine that is either running or is broken.

« If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0.

» Let the optimal value of Working and Brokenbe v(WW) and v(B).

States Actions C(action)
Maintenance 20
Working
Wait 0
Replace 150
Broken
Repair 40

v(W) = max{-20 + (0.6(0.8v(W) + 100) + 0.4(0.8v(8))), (0.3(0.8v(W) + 100) + 0.7(0.8v(B)) )}

v(B) = max{—150 + ((0.8v(W) + 100)),—40 + (0.6(0.8U(W) +100) + 0.4(0.8v(B)))}

:
CA P D Center for Advanced Process Decision-making

23



Infinite horizon Markov Decision Process - to make a maintenance decision

» Consider a machine that is either running or is broken.

« If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0.

States Actions C(action)
Maintenance 20
’ Working _
Wait 0
________ Replace 150
Broken _
________ > Repair 40

» Let the optimal value of Working and Brokenbe v(WW) and v(B).

v(W) = max{-20 + (0.6(0.8v(W) + 100) + 0.4(0.8v(8))), (0.3(0.8v(W) + 100) + 0.7(0.8v(B)) )}
> v(W) = max{0.32v(B) + 0.48v(W) + 40,0.56v(B) + 0.24v(W) + 30}

v(B) = max{—150 + ((0.8v(W) + 100)), —40 + (0.6(0.8v(W) +100) + 0.4(0.817(8)))}

- v(B) = max{0.8v(W) — 50,0.32v(B) + 0.48v(W) + 20}

:
CA P D Center for Advanced Process Decision-making
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Infinite horizon Markov Decision Process - to make a maintenance decision

» Consider a machine that is either running or is broken.

« If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0.

States Actions C(action)
Maintenance 20
’ Working _
Wait 0
________ Replace 150
Broken _
________ > Repair 40
» Let the optimal value of Working and Brokenbe v(WW) and v(B). minv(W) + v(B)
v(W) = max{0.32v(B) + 0.48v(W) + 40,0.56v(B) + 0.24v(W) + 30} > v(W) = Linéar Programming
v(B) = max{0.8v(W) — 50,0.32v(B) + 0.48v(W) + 20} > v(B) = }

:
CA P D Center for Advanced Process Decision-making
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Infinite horizon Markov Decision Process - to make a maintenance decision

» Consider a machine that is either running or is broken.

« If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0.

States Actions C(action)
Maintenance 20
’ Working _

Wait 0

________ Replace 150

Broken _
________ > Repair 40
» Let the optimal value of Working and Brokenbe v(WW) and v(B). minv(W) + v(B)

v(W) = max{0.32v(B) + 0.48v(W) + 40,0.56v(B) + 0.24v(W) + 30} > v(W) = 0.32v(B) + 0.48v(W) + 40, v(W) > 0.56v(B) + 0.24v(W) + 30}

v(B) = max{0.8v(W) — 50,0.32v(B) + 0.48v(W) + 20} 2> v(B) = 0.8v(W) — 50,v(B) = 0.32v(B) + 0.48v(W) + 20}

:
CA P D Center for Advanced Process Decision-making
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LP special property

General form of the previous problem:

For v that satisfy v > Hsv, applying the operator Hs again gives Hsv > Hs(Hsv), therefore
v > Hsv = -+ > lim Hfv=v" > v"isthe element-wise minimum

n—00

:
CAP D Center for Advanced Process Decision-making
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Infinite horizon Markov Decision Process - to make a maintenance decision

» Consider a machine that is either running or is broken.

« If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0.

States Actions C(action)
Maintenance 20
’ Working _

Wait 0

________ Replace 150

Broken _
________ > Repair 40
* Let the optimal value of Working and Broken be v(I#/) and v(B). min 40a(W, Mt) + 30a(W, Wt) — 50a(B, Re) + 20a(B, Rr)

e v(W) = max{0.320(B) + 0.48v(W) + 40,0.56v(B) + 0.24v(W) + 30} st. 0.52a(W,Mt) + 0.76a(W,Wt) — 0.8a(B,Re) — 0.48a(B,Rr) =1
—0.32a(W, Mt) — O.56a(WLLﬁta'jaTc(B,Re) + 0.68a(B,Rr) =1
v(B) = max{0.8v(W) — 50,0.32v(B) + 0.48v(W) + 20}

a(current state, action) > 0: The action is chosen for the state
a(current state, action) = 0: The action is not chosen for the state

:
CA P D Center for Advanced Process Decision-making
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Infinite horizon Markov Decision Process - to make a maintenance decision

» Consider a machine that is either running or is broken.

« If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0.

States Actions C(action)
Maintenance 20
’ Working _

Wait 0

________ Replace 150

Broken _
________ > Repair 40
* Let the optimal value of Working and Broken be v(I#/) and v(B). min 40a(W, Mt) + 30a(W, Wt) — 50a(B, Re) + 20a(B, Rr)

. v(W) = max{0.32v(B) + 0.48v(W) + 40,0.56v(B) + 0.24v(W) + 30} st 0.52a(W, M¢t) +0.76a(W, Wt) — 0.8a(B, Re) — 0.48a(B, Rr) = 1
—0.32a(W,Mt) — 0.56a(W,Wt) + a(B,Re) + 0.68a(B,Rr) =1

v(B) = max{0.8v(W) — 50,0.32v(B) + 0.48v(W) + 20}

a(current state, action) > 0: The action is chosen for the state

a(current state, action) = 0: The action is not chosen for the state

:
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Infinite horizon Markov Decision Process - to make a maintenance decision

» Consider a machine that is either running or is broken.

« If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0.

» Let the optimal value of Working and Brokenbe v(WW) and v(B).
v(W) = max{0.32v(B) + 0.48v(W) + 40,0.56v(B) + 0.24v(W) + 30}

v(B) = max{0.8v(W) — 50,0.32v(B) + 0.48v(W) + 20}

States Actions C(action)
Maintenance 20
Working
Wait 0
Replace 150
Broken
Repair 40

:
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Infinite horizon Markov Decision Process - to make a maintenance decision

» Consider a machine that is either running or is broken.

« If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0.

» Let the optimal value of Working and Brokenbe v(WW) and v(B).
v(W) = max{0.32v(B) + 0.48v(W) + 40,0.56v(B) + 0.24v(W) + 30}

v(B) = max{0.8v(W) — 50,0.32v(B) + 0.48v(W) + 20}

States Actions C(action)
Maintenance 20
’ Working _
Wait 0
________ Replace 150
Broken _
________ > Repair 40
Initialize
> v(B), v(W)
Value Itera}ion
v(W) « max{
v(B) <« max{ }

:
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Infinite horizon Markov Decision Process - to make a maintenance decision

» Consider a machine that is either running or is broken.

« If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0.

States Actions C(action)
Maintenance 20
’ Working _
Wait 0
________ Replace 150
Broken _
________ > Repair 40
Initialize
» Let the optimal value of Working and Brokenbe v(WW) and v(B). l
v(W) = max{0.32v(B) + 0.48v(W) + 40,0.561(B) + 0.24v(W) + 30 > v(B), v(W)
v(B) = max{0.8v(W) — 50,0.32v(B) + 0.48v(W) + 20}

v(W) « max{0.32v(B) + 0.48v(W) + 40,0.56v(B) + 0.24v(W) + 30}
v(B) « max{0.8v(W) — 50,0.32v(B) + 0.48v(W) + 20}
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Infinite horizon Markov Decision Process - to make a maintenance decision

» Consider a machine that is either running or is broken.

« If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0.

» Let the optimal value of Working and Brokenbe v(WW) and v(B).
v(W) = max{0.32v(B) + 0.48v(W) + 40,0.56v(B) + 0.24v(W) + 30}

v(B) = max{0.8v(W) — 50,0.32v(B) + 0.48v(W) + 20}

States Actions C(action)
Maintenance 20
Working
Wait 0
Replace 150
Broken
Repair 40

:
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Infinite horizon Markov Decision Process - to make a maintenance decision

» Consider a machine that is either running or is broken.

« If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0.

States Actions C(action)
Maintenance 20
’ Working _
Wait 0
________ Replace 150
Broken :
________ > Repair 40
o) = 0325 ]
v(B) = I
Policy. i i B) =148, v(W) = 168
(Maintenance, ) Policy Iteration v(B) = , v(W) =
v(W) <« max{[0.32v
v(B) < max{0.8v }
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Infinite horizon Markov Decision Process - to make a maintenance decision

» Consider a machine that is either running or is broken.

« If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0.

0.7

v(w) = 0.32v(8) + 048v(w) + 40, | G
v(8) =R 0.32v(B) + 0.48v(W) + 20

Policy:
(Maintenance, Repair)

States Actions C(action)
Maintenance 20
’ Working _
Wait 0
________ Replace 150
Broken :
________ > Repair 40

-

v(B) = 148, v(W) = 168

v(W) « max{{0.32v(B) + 0.48v(W) + 40 = 168

0.56v(B) + 0.24v(W) + 30 = 153.2}

v(B) « max{0.8v(W) — 50 = 84.4,

0.32v(B) + 0.48v(W) + 20 = 148

}

:
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Things to cover

4 )
Markov Decision Process

[ Markov Chain J

« Markov Decision Process is the superstructure of Markov Chains on action space;
« Markov Decision Process reduces to Markov Chain when the actions are fixed.

:
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Infinite horizon Markov Decision Process - to make a maintenance decision

» Consider a machine that is either running or is broken.

« If it runs throughout one week, it makes a gross profit of $100. If it fails during the week, gross profit is 0.

0.4

0.6

Transition probability matrix

Working Broken

Working 0.6 0.4

Broken 0.6 04

States Actions C(action)
Maintenance 20
’ Working _
Broken <. — Wait 0
- R > Replace 150
~--- Broken
04 R Repair 40
Stationary probability:

[Pr(Working) ,Pr(Broken)] - lgg’gi = [Pr(Working) , Pr(Broken)]

Pr(Working) + Pr(Broken) =1

Pr(Working) = 0.6, Pr(Broken) = 0.4

—
CA P D Center for Advanced Process Decision-making

37



Things to cover

( )
Markov Decision Process
N A
Extremely large Hard to describe
explicitly and exactly

Approximate

[ Reinforcement learning k:' Dynamic Programming

Temporal difference learnlng

:
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Reinforcement learning - simulation based optimization

Temporal difference learning: update state-action value function after every interaction with the environment.

Recall: Optimal condition v(s) = gglx{Esr(R(s, a,s)|a) + yEg(v(s)|a)}, Vs €S

Q learning:
* Look-up table of Q(s,, a;)
» Parameterize Q(s,, a;) with basis functions and learn the parameters via neural networks

3. Update belief
Q" (sp,a)< (1 - C?Z) Q% (sp,ap) +a -

+1 +%" max (QOld(5t+11 Art1)))
A€Asey

Learning Learning Discount
rate rate factor
:' Agent | e 1 :
l J 0. Initialized the belief of Q
2. Feedback 1. Take action based on current belief of Q
St+1 Rev1 A= cgzlgi QCse, ar)
(

| Environment ]’

—
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Deep Q Networks

Mnih et al., 2013

High
dimensional
input

Atari game
screenshots

:
CA P D Center for Advanced Process Decision-making

1st hidden

layer layer

2nd hidden

3rd hidden

layer output

23

- o o
[

..
Iol:,__

fully

connected :connec

8

fully
ted :

o

Convolutional Neural Network

(Q(éf ) ('LU)
Q(s¢,a')
Q(st, (1-2)

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, |., Wierstra, D., & Riedmiller, M. (2013). Playing

atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
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Summary

Exogenous  Endogenous

uncertainty ~ uncertainty

Stochastic
programming

- e e e e e e e e e e e e e e e e e e e

Dynamic Programming

State representation Markov Decision Process

Algorithmic tools for
infinite horizon cases

Linear Programming

v..

Markovian property [ Markov Chain ]

Random turn-out with & '

,——————-g.‘——'-,"’————————————-

___________________________________________

Extremely large | | Hard to describe
explicitly and
exactly

Approximate

[ Reinforcement learning k:' Dynamic Programming

Temporal difference learnlng

Policy Iteration

Value lteration

:
c A P D Center for Advanced Process Decision-making

41



Further extension and recommended resources

* Semi-Markov Decision Process - Continuous Markov Chain
* Partially observed Markov Decision Process - Hidden Markov Chain
 Time-inhomogeneous behaviors

Puterman, Martin L Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons,

2014.
Bertsekas, Dimitri P., et al. Dynamic programming and optimal control. Vol. 1. No. 2. Belmont, MA: Athena

scientific, 1995.
Boucherie, Richard J., and Nico M. Van Dijk, eds. Markov decision processes in practice. Springer International

Publishing, 2017.
Alfa, Attahiru Sule, and Barbara Haas Margolius. “Two classes of time-inhomogeneous Markov chains: Analysis

of the periodic case." Annals of Operations Research 160.1 (2008): 121-137.

—
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