# Atutorial of Markov Decision Process starting from the perspective of Stochastic Programming

Yixin Ye

Department of Chemical Engineering, Carnegie Mellon University

Feb 13, 2020

# Markov?

А. А. Марков. "Распространение закона больших чисел на величины, зависящие друг от друга". "Известия Физико-математического общества при Казанском университете", 2-я серия, том 15, ст. 135–156, 1906

A. A. Markov. "Spreading the law of large numbers to quantities that depend on each other." "Izvestiya of the Physico-Mathematical Society at the Kazan University", 2-nd series, volume 15, art. 135–156, 1906



Andrey Andreyevich Markov

# Why - Wide applications

 White, Douglas J. "A survey of applications of Markov decision processes." *Journal of the operational research society* 44.11 (1993): 1073–1096.

TABLE 1. Application areas

| 1      | Population harvesting                | (5)  |
|--------|--------------------------------------|------|
| 2      | Agriculture                          | (5)  |
| 3      | Water resources                      | (15) |
| 4      | Inspection, maintenance and repair   | (18) |
| 5      | Purchasing, inventory and production | (14) |
| 6<br>7 | Finance and investment               | (9)  |
|        | Queues                               | (6)  |
| 8<br>9 | Sales promotion                      | (4)  |
| 9      | Search                               | (3)  |
| 10     | Motor insurance claims               | (2)  |
| 11     | Overbooking                          | (5)  |
| 12     | Epidemics                            | (2)  |
| 13     | Credit                               | (2)  |
| 14     | Sports                               | (2)  |
| 15     | Patient admissions                   | (1)  |
| 16     | Location                             | (1)  |
| 17     | Design of experiments                | (1)  |
| 18     | General                              | (5)  |

- Boucherie, Richard J., and Nico M. Van Dijk, eds. *Markov decision processes in practice*. Springer International Publishing, 2017.
  - Part I: General Theory
  - Part II: Healthcare
  - Part III: Transportation
  - Part IV: Production
  - Part V: Communications
  - Part VI: Financial Modeling



## MDP x PSE

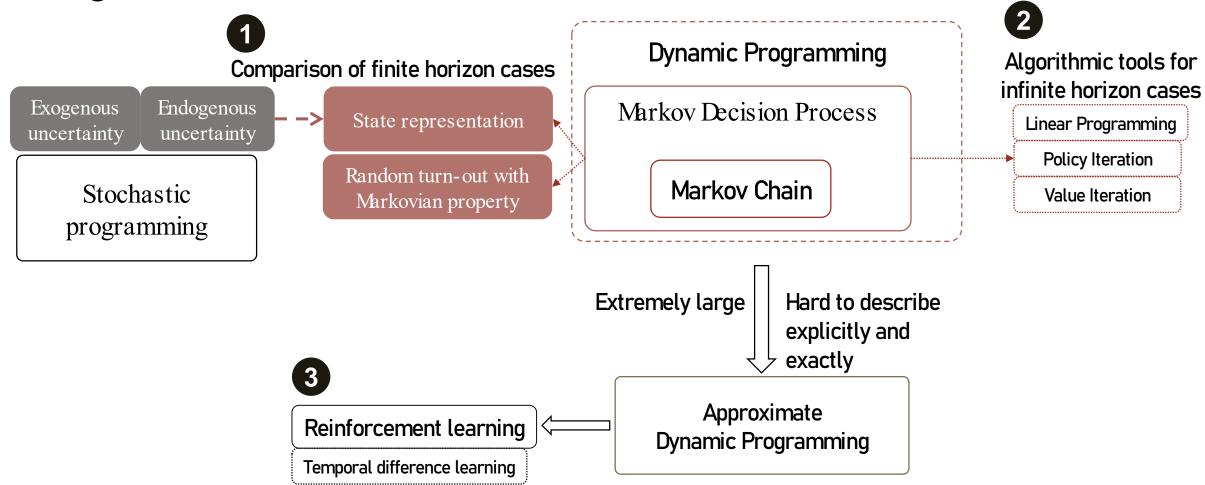
- Saucedo, Victor M., and M. Nazmul Karim. "On-line optimization of stochastic processes using Markov Decision Processes." *Computers & chemical engineering* 20 (1996): S701–S706.
- Tamir, Abraham. *Applications of Markov chains in chemical engineering*. Elsevier, 1998.
- Wongthatsanekorn, Wuthichai & Realff, Matthew J. & Ammons, Jane C., 2010. "Multi-time scale Markov decision process approach to strategic network growth of reverse supply chains," Omega, Elsevier, vol. 38(1-2), pages 20-32, February.
- Wong, Wee Chin, and Jay H. Lee. "Fault detection and diagnosis using hidden Markov disturbance models." Industrial & Engineering Chemistry Research 49.17 (2010): 7901–7908.
- Martagan, Tugce, and Ananth Krishnamurthy. "Control and Optimization of Bioprocesses Using Markov Decision Process." *IIE Annual Conference. Proceedings*. Institute of Industrial and Systems Engineers (IISE), 2012.
- Goel, Vikas, and Kevin C. Furman. "Markov decision process-based support tool for reservoir development planning." U.S. Patent No. 8,775,347. 8 Jul. 2014.
- Kim, Jong Woo, et al. "Optimal scheduling of the maintenance and improvement for water main system using Markov decision process." *IFAC-Papers OnLine* 48.8 (2015): 379–384.

# How – Comparative demonstration

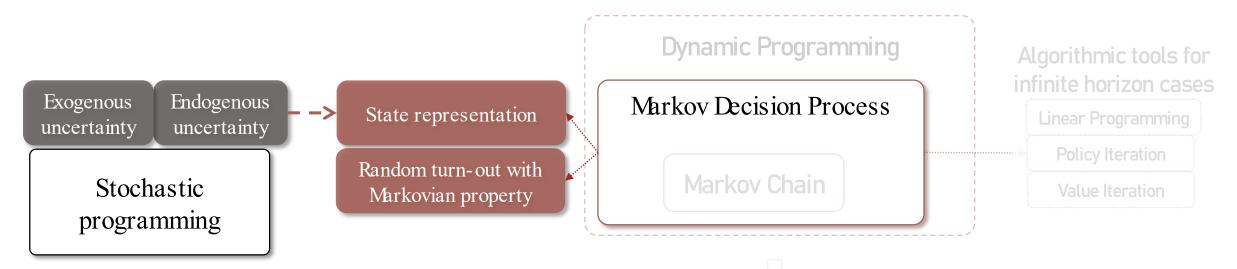
- Markov Decision Process is a less familiar tool to the PSE community for decisionmaking under uncertainty.
- Stochastic programming is a more familiar tool to the PSE community for decisionmaking under uncertainty.
- This talk will start from a comparative demonstration of these two, as a perspective to introduce Markov Decision Process.

- Dupačová, J., & Sladký, K. (2002). Comparison of multistage stochastic programs with recourse and stochastic dynamic programs with discrete time. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, 82(11-12), 753-765.
- Cheng, L., Subrahmanian, E., & Westerberg, A. W. (2004). A comparison of optimal control and stochastic programming from a formulation and computation perspective. *Computers & Chemical Engineering*, 29(1), 149-164.
- Powell, W. B. (2019). A unified framework for stochastic optimization. European Journal of Operational Research, 275(3), 795-821.

# Things to cover



# Things to cover

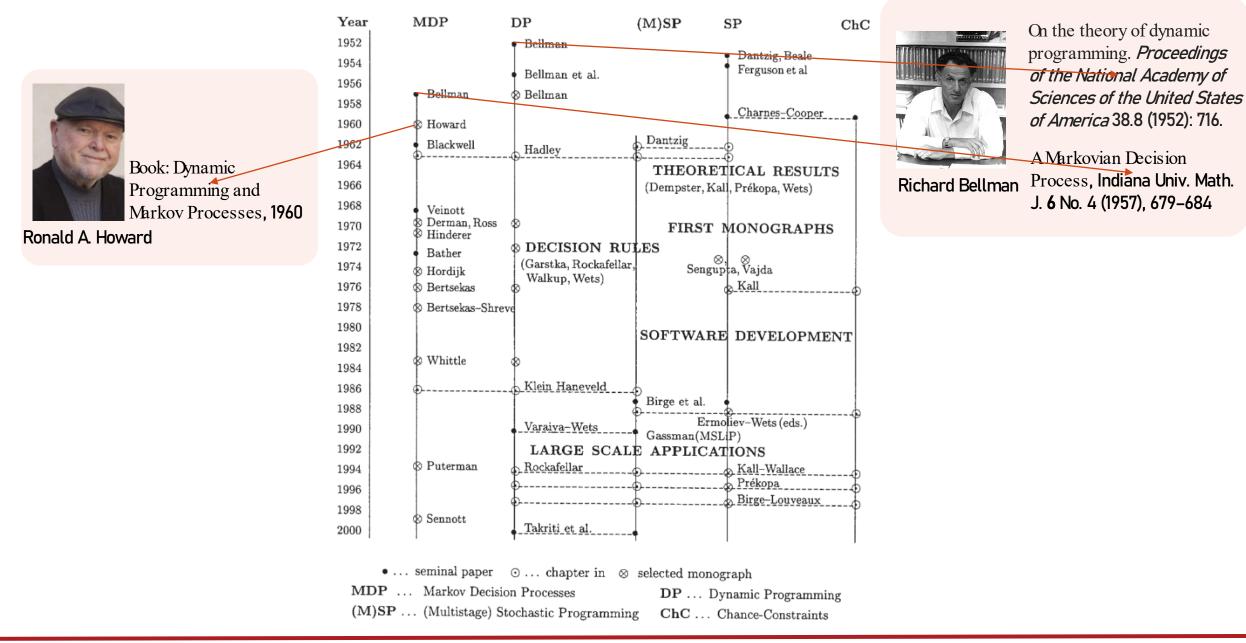


Multi-stage stochastic programming VS Finite-horizon Markov Decision Process

- Special properties, general formulations and applicable areas
- Intersection at an example problem

Approximate Dynamic Programming

#### HISTORY AND CONNECTIONS



CAPD Center for Advanced Process Decision-making

Dupačová, J., & Sladký, K. (2002). Comparison of multistage stochastic programs with recourse and stochastic dynamic programs with discrete time. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, 82(11-12), 753-765.

Exogenous uncertainty

Endogenous uncertainty

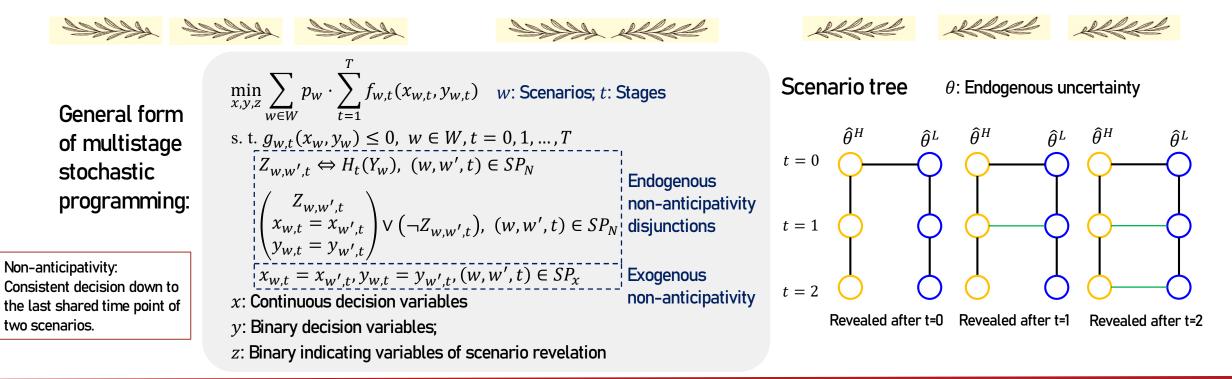
- Uncertainty parameter realizations are independent of decisions:
   E.g. Stock prices for individual investors, Oil/gas reserve amount of wells to be drilled,
   Product demands for small business owners
- Uncertainty parameter realizations are influenced by decisions:
  - Type I: Decisions impact the probability distributions.
  - Eg. Block trades by institutional investors causing stock price changes
  - Type II: Decisions impact the observations.
  - Eg. Shale gas reserve amount revealed upon drilling

# Stochastic Programming – Static & Exhaustive

Exogenous uncertainty

Endogenous uncertainty • Uncertainty parameter realizations are independent of decisions: *Eg. Stock prices, Oil/gas reserve amount, Product demands* 

- Uncertainty parameter realizations are influenced by decisions:
  - Type I: Decisions impact the probability distributions.
  - Type II: Decisions impact the observations.

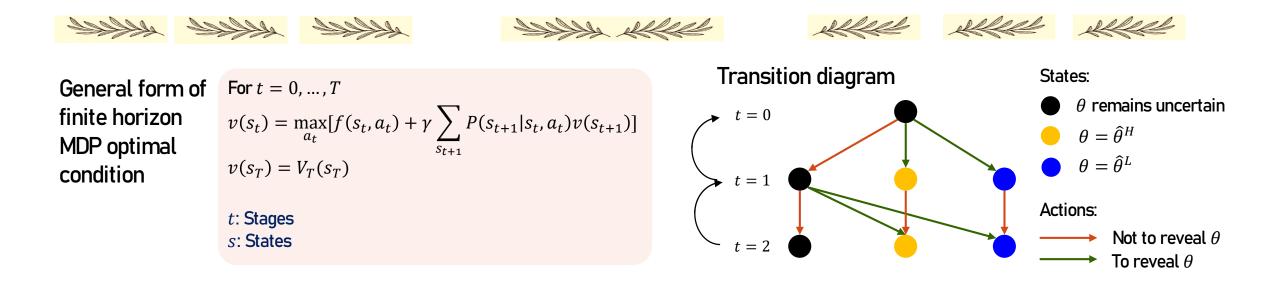


# Markov Decision Process – Dynamic & Recursive

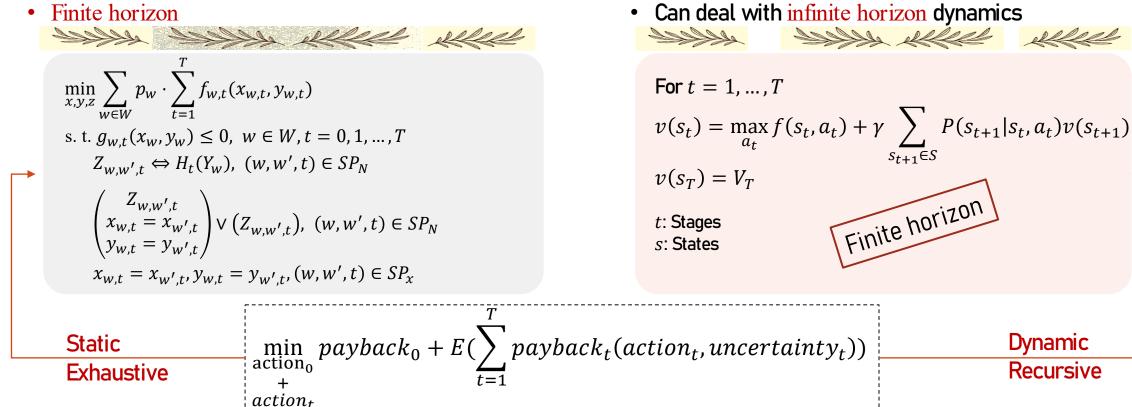
State representation

Random turn-out with Markovian property\_\_\_\_

- The system (the entity to model) transitions among a set of finite states *Eg. A machine working, or broken*
- Probability distributions only depend on the current state



- Look ahead into future uncertainty with flexible form:
  - Relationship between current stage decision and next stage behaviors can be described with constraints
- Reasonable number of stages (scenarios)



- Look ahead into future uncertainty with recursive structure:
  - Has state representation and corresponding Markovian behavior
- Reasonable number of states
- Can deal with infinite horizon dynamics



Dynamic

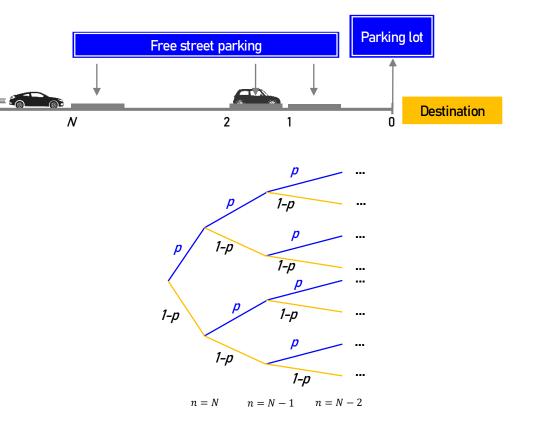
Recursive

# Solve a problem with both tools – parking problem

- You are driving to the destination from street parking spot *N* and you can observe whether parking spot *n* is empty only when arriving at the spot.
- By probability *p*, a spot is empty; By probability *1-p*, a spot is occupied.
- The parking lot is always available with fee c (>1).
- The inconvenience penalty of parking at street parking spot *n* is *n*.

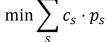
Decision to make at spot *n=1,...,N* 

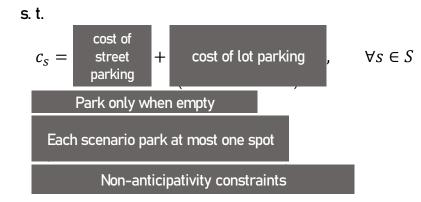
Park if possible **OR** Keep looking for closer spot



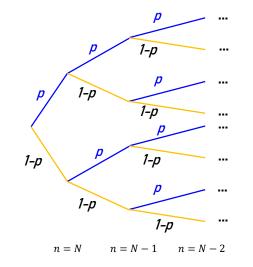
- Indicating parameter  $\delta_{n,s}$ 
  - $\delta_{n,s} = 0$ : Spot n is occupied in scenario s;
  - $\delta_{n,s} = 1$ : Spot *n* is empty in scenario *s*;
- Binary variable  $y_{n,s}$ 
  - $y_{n,s} = 0$ : In scenario *s*, do not park in spot n;
  - $y_{n,s} = 1$ : In scenario *s*, park in spot n;
- Variable  $c_s$ : Cost of scenario s
- Variable  $p_s$ : Probability of scenario s.  $p_s = \prod_{n=1}^{N} (p \cdot \delta_{n,s} + (1-p)(1-\delta_{n,s}))$

#### • MILP model:

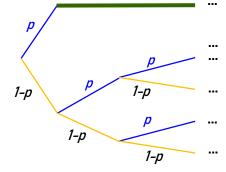




"Keep driving anyway"



"Park when the farthest spot is available"



n=N n=N-1 n=N-2

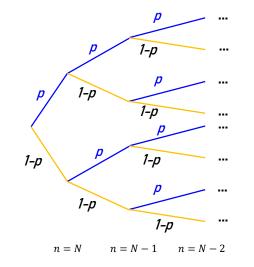
- Indicating parameter  $\delta_{n,s}$ 
  - $\delta_{n,s} = 0$ : Spot *n* is occupied in scenario *s*;
  - $\delta_{n,s} = 1$ : Spot *n* is empty in scenario *s*;
- Binary variable  $y_{n,s}$ 
  - $y_{n,s} = 0$ : In scenario *s*, do not park in spot n;
  - $y_{n,s} = 1$ : In scenario *s*, park in spot n;
- Variable  $c_s$ : Cost of scenario s
- Variable  $p_s$ : Probability of scenario s.  $p_s = \prod_{n=1}^{N} (p \cdot \delta_{n,s} + (1-p)(1-\delta_{n,s}))$

#### • MILP model:

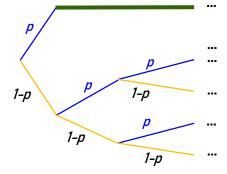
$$\min\sum_{s} c_s \cdot p_s$$

$$\begin{split} c_s &= \sum_{n=1}^N y_{n,s} \cdot n + \left(1 - \sum_{n=1}^N y_{n,s}\right) \cdot c, \qquad \forall s \in S \\ y_{n,s} &\leq \delta_{n,s}, \forall 1 \leq n \leq N, s \in S \\ \sum_{n=1}^N y_{n,s} \leq 1, \qquad \forall s \in S \\ y_{n,s} &= y_{n,s'}, \qquad \forall 1 \leq n \leq N_{s,s'}^{parent}, s, s' \in S \end{split}$$

#### "Keep driving anyway"



#### "Park when the farthest spot is available"



n=N n=N-1 n=N-2

$$\min \sum_{s} c_{s} \cdot p_{s}$$
  
s.t.  

$$c_{s} = \sum_{n=1}^{N} y_{n,s} \cdot n + \left(1 - \sum_{n=1}^{N} y_{n,s}\right) \cdot c, \quad \forall s \in S$$
  

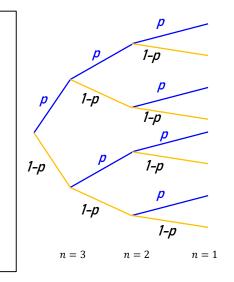
$$y_{n,s} \leq \delta_{n,s}, \forall 1 \leq n \leq N, s \in S$$
  

$$\sum_{n} y_{n,s} \leq 1, \quad \forall s \in S$$
  

$$y_{n,s} = y_{n,s'}, \quad \forall 1 \leq n \leq N_{s,s'}^{parent}, s, s' \in S$$

#### Result

|     | Result               |                |                                       |                |                                       |                |           |                |                                       |                |           |                |           |                |                                       |                |                  |                                 | LOWER | LEVEL          | UPPE                     |
|-----|----------------------|----------------|---------------------------------------|----------------|---------------------------------------|----------------|-----------|----------------|---------------------------------------|----------------|-----------|----------------|-----------|----------------|---------------------------------------|----------------|------------------|---------------------------------|-------|----------------|--------------------------|
| -   |                      | <i>s</i> =     | = 1                                   | S =            | = 2                                   | <i>s</i> =     | = 3       | <i>s</i> =     | = 4                                   | <i>s</i> =     | = 5       | <i>s</i> =     | = 6       | <i>s</i> =     | = 7                                   | <i>s</i> =     | = 8              | 1.1<br>1.2<br>1.3               |       | 1.000          | 1.0<br>1.0<br>1.0        |
|     |                      | $\delta_{n,s}$ | <i>Y</i> <sub><i>n</i>,<i>s</i></sub> | $\delta_{n,s}$ | <i>y</i> <sub><i>n</i>,<i>s</i></sub> | $\delta_{n,s}$ | $y_{n,s}$ | $\delta_{n,s}$ | <i>y</i> <sub><i>n</i>,<i>s</i></sub> | $\delta_{n,s}$ | $y_{n,s}$ | $\delta_{n,s}$ | $y_{n,s}$ | $\delta_{n,s}$ | <i>y</i> <sub><i>n</i>,<i>s</i></sub> | $\delta_{n,s}$ | y <sub>n,s</sub> | 1.4<br>1.5<br>1.6               |       | 1.000          | 1.0<br>1.0<br>1.0        |
|     | n = 1                | 0              | 0                                     | 1              | 1                                     | 0              | 0         | 1              | 0                                     | 0              | 0         | 1              | 1         | 0              | 0                                     | 1              | 0                | 1.7<br>1.8<br>2.1               |       | •              | 1.<br>1.<br>1.           |
|     | n = 2                | 0              | 0                                     | 0              | 0                                     | 1              | 1         | 1              | 1                                     | 0              | 0         | 0              | 0         | 1              | 1                                     | 1              | 1                | 2.2<br>2.3<br>2.4<br>2.5        |       | 1.000<br>1.000 | 1.<br>1.<br>1.<br>1.     |
| 6 - | n = 3                | 0              | 0                                     | 0              | 0                                     | 0              | 0         | 0              | 0                                     | 1              | 0         | 1              | 0         | 1              | 0                                     | 1              | 0                | 2.5<br>2.6<br>2.7<br>2.8        |       | 1.000<br>1.000 | 1.<br>1.                 |
|     | $y_{n,s} = 0$ : In   | scena          | rios. d                               | lo not         | park in                               | spot r         | r.        |                |                                       |                |           |                |           |                |                                       |                |                  | 2.8<br>3.1<br>3.2<br>3.3<br>3.4 | •     |                | 1.0<br>1.0<br>1.0<br>1.0 |
|     | $y_{n,s} = 1: \ln 1$ |                |                                       |                |                                       |                | -,        |                |                                       |                |           |                |           |                |                                       |                |                  | 3.5<br>3.6<br>3.7<br>3.8        |       |                | 1.0<br>1.0<br>1.0        |



---- VAR y

N = 3, p = 0.6, c = 4

PPER MARGINAL 1.000 -0.192 1.000 -0.288 1.000 -0.288 1.000 -0.432 1.000 -0.288 1.000 -0.432 1.000 -0.432 1.000 -0.648 1.000 -0.128 1.000 -0.192 1.000 -0.192 1.000 -0.288 1.000 -0.192 1.000 -0.288 1.000 -0.288 1.000 -0.432 1.000 -0.064 1.000 -0.096 1.000 -0.096 1.000 -0.1441.000 -0.096 1.000 -0.1441.000 -0.144 1.000 -0.216

#### CAPD Center for Advanced Process Decision-making

### Markov Decision Process

- Recursive backtracking
- State space:

 ${(n, i)|1 \le n \le N, i \in {0,1}} + {(0,1)} + {Parked}$ i = 0: Cannot park :, i = 1: Can park

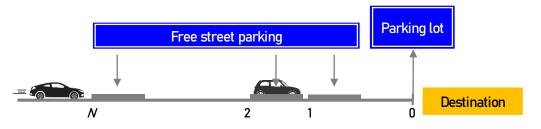
• Action space:

 $A_{n,0} = \{\text{keep looking}\}, A_{n,1} = \{\text{Park, Keep looking}\}, A_{0,1} = \{\text{Park}\}$ 

• <u>Transition probabilities</u>:

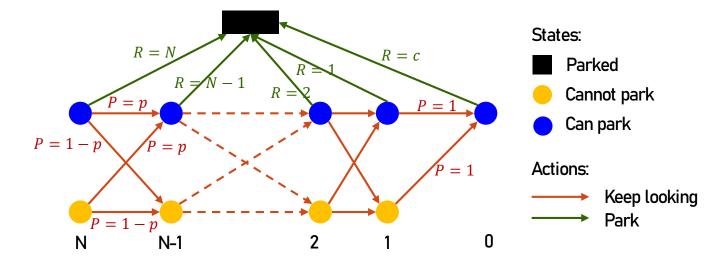
P((n, 0), keep looking, (n - 1, 1)) = p, P((n, 0), keep looking, (n - 1, 0)) = 1 - p, P((n, 1), keep looking, (n - 1, 1)) = p, P((n, 1), keep looking, (n - 1, 0)) = 1 - p,P((n, 1), park, parked) = 1

P((1,1), keep looking, (0,1)) = 1P((1,0), keep looking, (0,1)) = 1



- <u>Direct cost</u>: R((n, 1), Park, Parked) = n, R((0,1), Park, Parked) = c
- $f_{n,i}$ : Optimal expected cost starting from state (n, i)
- Boundary condition:  $f_0 = c$
- Recursive optimality condition:

$$f_{n,0} = p \cdot f_{n-1,1} + (1-p) \cdot f_{n-1,0}$$
  
$$f_{n,1} = \min\{n, p \cdot f_{n-1,1} + (1-p) \cdot f_{n-1,0}\}$$



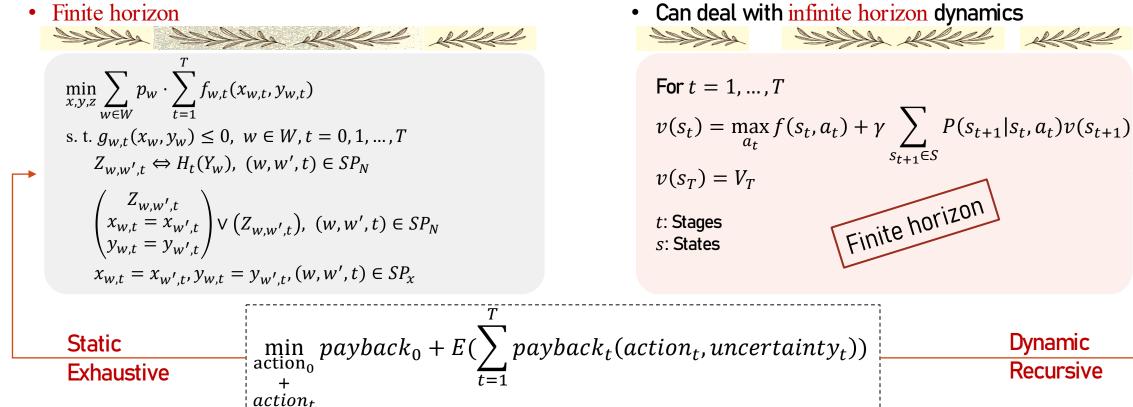
### Markov Decision Process

Optimal cost at parking spot n with the spot occupied -  $f_{n,0} = p \cdot f_{n-1,1} + (1-p) \cdot f_{n-1,0}$ Optimal cost at parking spot n with the spot empty -  $f_{n,1} = \min\{ \begin{array}{cc} n, & p \cdot f_{n-1,1} + (1-p) \cdot f_{n-1,0} \} \\ \text{To park} & \text{To keep looking} \end{array}$ 

N = 3, p = 0.6, c = 4



- Look ahead into future uncertainty with flexible form:
  - Relationship between current stage decision and next stage behaviors can be described with polytopes
- Reasonable number of stages (scenarios)

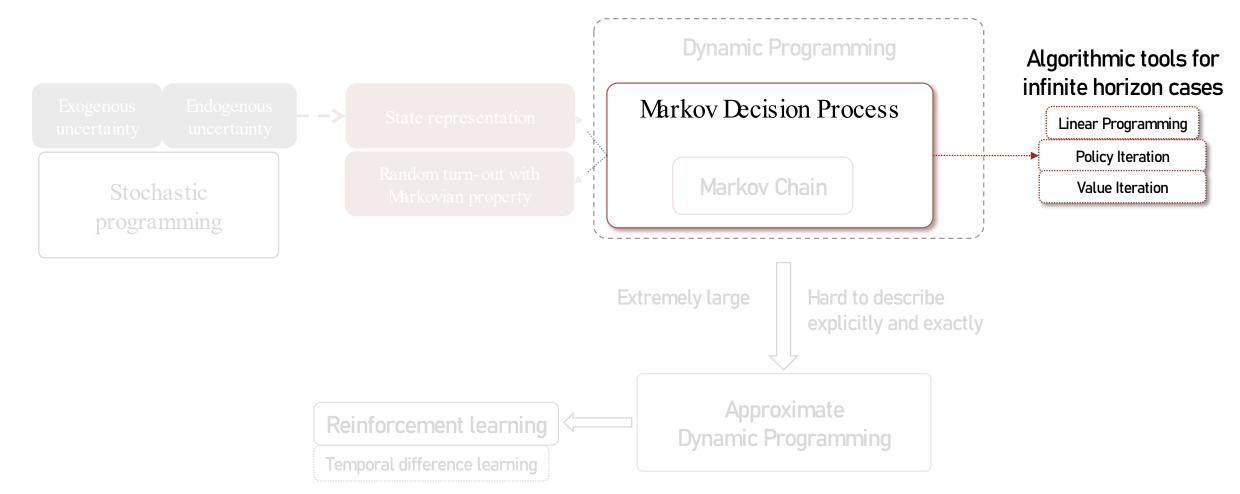


- Look ahead into future uncertainty with recursive structure:
  - Has state representation and corresponding Markovian behavior
- Reasonable number of states
- Can deal with infinite horizon dynamics

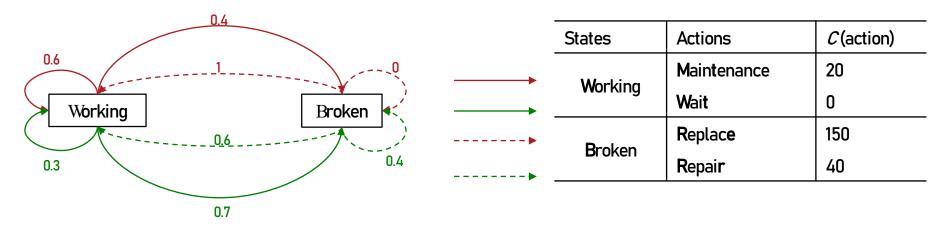
Dynamic

Recursive

# Things to cover

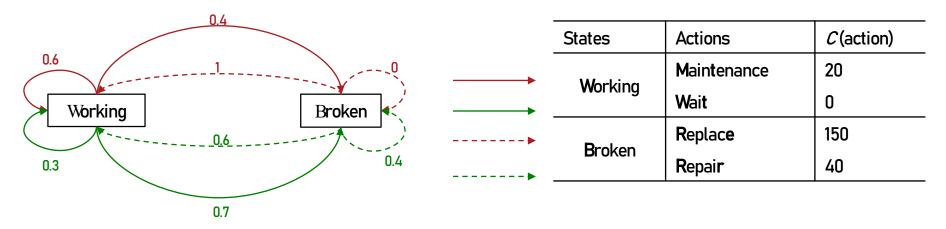


- Consider a machine that is either running or is broken.
- If it runs throughout one week, it makes a gross profit of \$100. If it fails during the week, gross profit is 0.



- Purpose: find the best action for each state
- <u>State space</u> *S* = {Working, Broken}
- <u>Action space</u> A(current state): A(Working) = {Maintenance, Wait}, A(Broken) = {Replace, Repair}
- <u>Transition probabilities</u> *P*(current state, action, next state): as shown in the graph
- **<u>Direct reward</u>** R(current state, action): -C(action) + E(gross profit|action)
- Discount factor  $\gamma = 0.8$

- Consider a machine that is either running or is broken.
- If it runs throughout one week, it makes a gross profit of \$100. If it fails during the week, gross profit is 0.

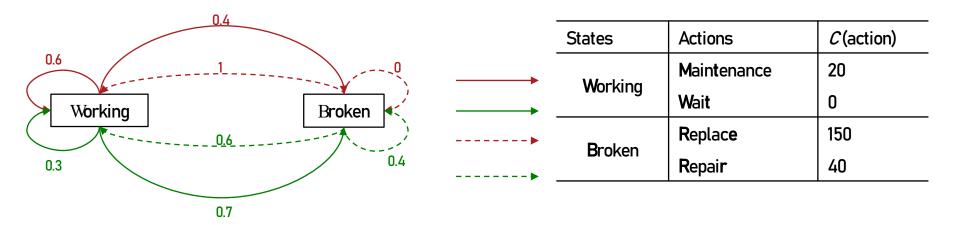


• Purpose: find the best action for each state

 $v(\text{current state}) = \max_{\text{action} \in \{\text{Actions}\}} \{-C(\text{action}) + E(\text{gross profit}|\text{action}) + \gamma E(v(\text{next state})|\text{action})\}$ 

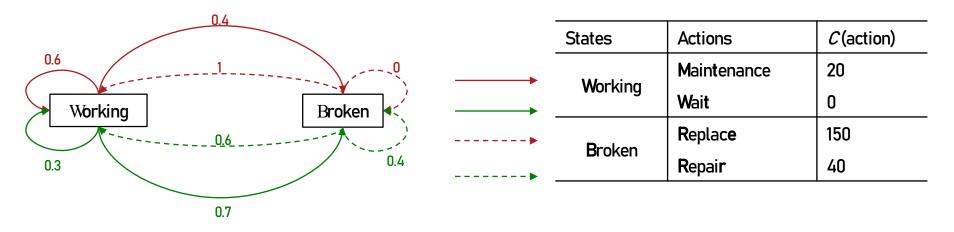
**Optimality condition** 

- Consider a machine that is either running or is broken.
- If it runs throughout one week, it makes a gross profit of \$100. If it fails during the week, gross profit is 0.



- Let the optimal value of **Working** and **Broken** be v(W) and v(B).
- $v(W) = \max\left\{-20 + \left(0.6(0.8v(W) + 100) + 0.4(0.8v(B))\right), \left(0.3(0.8v(W) + 100) + 0.7(0.8v(B))\right)\right\}$
- $v(B) = \max\{-150 + ((0.8v(W) + 100)), -40 + (0.6(0.8v(W) + 100) + 0.4(0.8v(B)))\}$

- Consider a machine that is either running or is broken.
- If it runs throughout one week, it makes a gross profit of \$100. If it fails during the week, gross profit is 0.

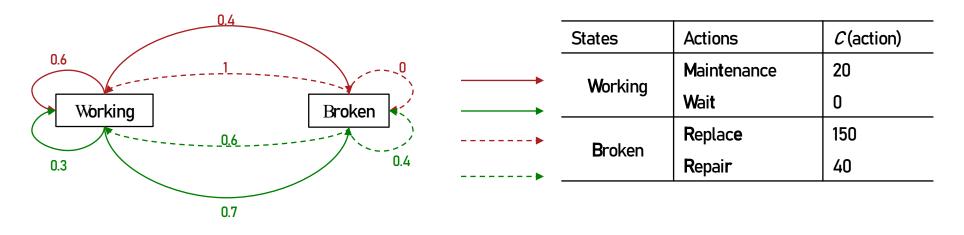


- Let the optimal value of **Working** and **Broken** be v(W) and v(B).
- $v(W) = \max\left\{-20 + \left(0.6(0.8v(W) + 100) + 0.4(0.8v(B))\right), \left(0.3(0.8v(W) + 100) + 0.7(0.8v(B))\right)\right\}$

→  $v(W) = \max\{0.32v(B) + 0.48v(W) + 40, 0.56v(B) + 0.24v(W) + 30\}$ 

- $v(B) = \max\{-150 + ((0.8v(W) + 100)), -40 + (0.6(0.8v(W) + 100) + 0.4(0.8v(B)))\}$ 
  - →  $v(B) = \max\{0.8v(W) 50, 0.32v(B) + 0.48v(W) + 20\}$

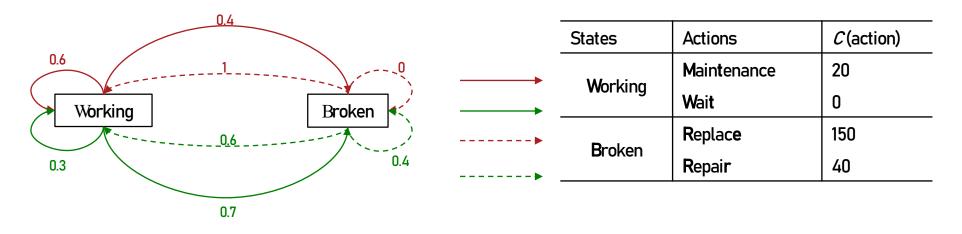
- Consider a machine that is either running or is broken.
- If it runs throughout one week, it makes a gross profit of \$100. If it fails during the week, gross profit is 0.



- Let the optimal value of **Working** and **Broken** be v(W) and v(B).
- $v(W) = \max\{0.32v(B) + 0.48v(W) + 40, 0.56v(B) + 0.24v(W) + 30\}$
- $v(B) = \max\{0.8v(W) 50, 0.32v(B) + 0.48v(W) + 20\}$

|               | $\min v(W) + v(B)$                                                                         |  |
|---------------|--------------------------------------------------------------------------------------------|--|
| $\rightarrow$ | $v(W) \ge 0.32v(B) + 0.48v(W) + 40, v(W) > 0.56v(B) + 0.24v(W) + 30$<br>Linear Programming |  |
| $\rightarrow$ | $v(B) \ge 0.8v(W) - 50, v(B) \ge 0.32v(B) + 0.48v(W) + 20$                                 |  |

- Consider a machine that is either running or is broken.
- If it runs throughout one week, it makes a gross profit of \$100. If it fails during the week, gross profit is 0.



- Let the optimal value of **Working** and **Broken** be v(W) and v(B).
- $v(W) = \max\{0.32v(B) + 0.48v(W) + 40, 0.56v(B) + 0.24v(W) + 30\}$
- $v(B) = \max\{0.8v(W) 50, 0.32v(B) + 0.48v(W) + 20\}$

 $\min v(W) + v(B)$  $\Rightarrow v(W) \ge 0.32v(B) + 0.48v(W) + 40, v(W) \ge 0.56v(B) + 0.24v(W) + 30\}$ 

→ v(B) ≥ 0.8v(W) - 50, v(B) ≥ 0.32v(B) + 0.48v(W) + 20

### LP special property

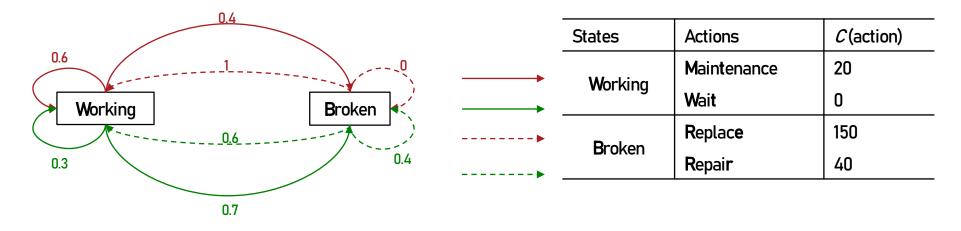
General form of the previous problem:

 $\boldsymbol{v}^* = \arg\min_{\boldsymbol{v}} \mathbf{1}^{\mathrm{T}} \boldsymbol{v}$ s.t.  $\boldsymbol{v} \geq H_{\delta} \boldsymbol{v}, \ \forall \boldsymbol{\delta} \in \Delta$   $\Delta = A(1) \times \cdots \times A(|S|)$  is policy space

For v that satisfy  $v \ge H_{\delta}v$ , applying the operator  $H_{\delta}$  again gives  $H_{\delta}v \ge H_{\delta}(H_{\delta}v)$ , therefore  $v \ge H_{\delta}v \ge \cdots \ge \lim_{n \to \infty} H_{\delta}^n v = v^* \rightarrow v^*$  is the element-wise minimum

| $\boldsymbol{v}^* = \arg\min_{\boldsymbol{v}} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{v}$                | where $w$ is any positive weight vector                     |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| s.t. $\boldsymbol{v} \geq H_{\delta}\boldsymbol{v}, \forall \boldsymbol{\delta} \in \boldsymbol{\Delta}$ | $\Delta = A(1) \times \cdots \times A( S )$ is policy space |

- Consider a machine that is either running or is broken.
- If it runs throughout one week, it makes a gross profit of \$100. If it fails during the week, gross profit is 0.

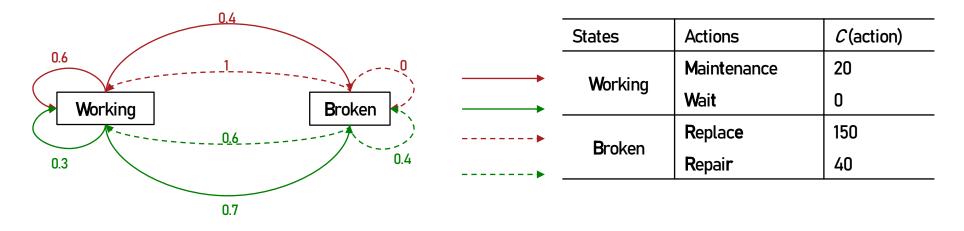


- Let the optimal value of **Working** and **Broken** be v(W) and v(B).
- $v(W) = \max\{0.32v(B) + 0.48v(W) + 40, 0.56v(B) + 0.24v(W) + 30\}$
- $v(B) = \max\{0.8v(W) 50, 0.32v(B) + 0.48v(W) + 20\}$

 $\min 40\alpha(W, Mt) + 30\alpha(W, Wt) - 50\alpha(B, Re) + 20\alpha(B, Rr)$ s.t. 0.52 $\alpha(W, Mt) + 0.76\alpha(W, Wt) - 0.8\alpha(B, Re) - 0.48\alpha(B, Rr) = 1$  $-0.32\alpha(W, Mt) - 0.56\alpha(W, Wt) + \alpha(B, Re) + 0.68\alpha(B, Rr) = 1$ 

 $\alpha$ (*current state, action*) > 0: The action is chosen for the state  $\alpha$ (*current state, action*) = 0: The action is not chosen for the state

- Consider a machine that is either running or is broken.
- If it runs throughout one week, it makes a gross profit of \$100. If it fails during the week, gross profit is 0.

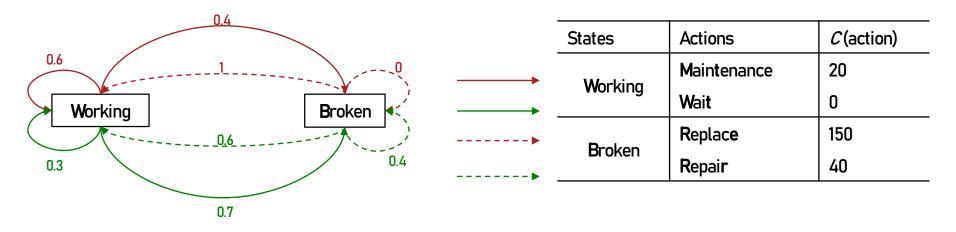


- Let the optimal value of **Working** and **Broken** be v(W) and v(B).
- $v(W) = \max\{0.32v(B) + 0.48v(W) + 40, 0.56v(B) + 0.24v(W) + 30\}$
- $v(B) = \max\{0.8v(W) 50, 0.32v(B) + 0.48v(W) + 20\}$

 $\min 40\alpha(W, Mt) + 30\alpha(W, Wt) - 50\alpha(B, Re) + 20\alpha(B, Rr)$ s.t. 0.52 $\alpha(W, Mt) + 0.76\alpha(W, Wt) - 0.8\alpha(B, Re) - 0.48\alpha(B, Rr) = 1$  $-0.32\alpha(W, Mt) - 0.56\alpha(W, Wt) + \alpha(B, Re) + 0.68\alpha(B, Rr) = 1$ 

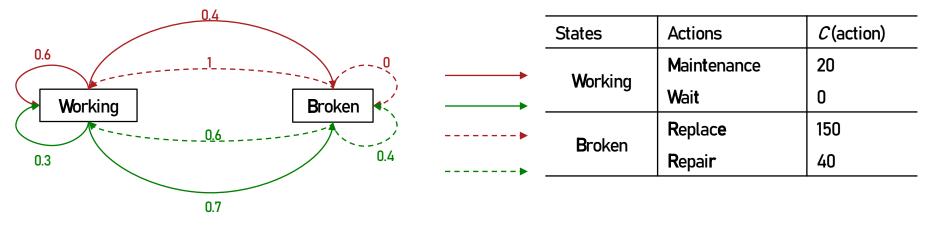
 $\alpha$ (*current state, action*) > 0: The action is chosen for the state  $\alpha$ (*current state, action*) = 0: The action is not chosen for the state

- Consider a machine that is either running or is broken.
- If it runs throughout one week, it makes a gross profit of \$100. If it fails during the week, gross profit is 0.

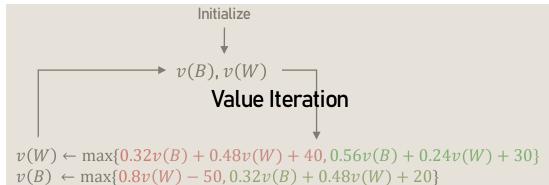


- Let the optimal value of **Working** and **Broken** be v(W) and v(B).
- $v(W) = \max\{0.32v(B) + 0.48v(W) + 40, 0.56v(B) + 0.24v(W) + 30\}$
- $v(B) = \max\{0.8v(W) 50, 0.32v(B) + 0.48v(W) + 20\}$

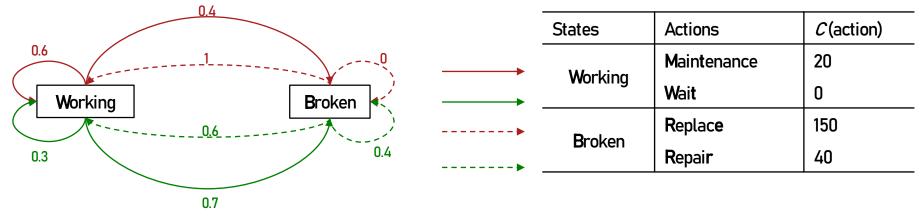
- Consider a machine that is either running or is broken.
- If it runs throughout one week, it makes a gross profit of \$100. If it fails during the week, gross profit is 0.



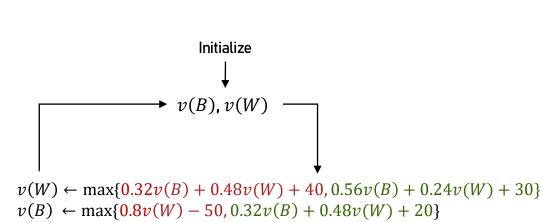
- Let the optimal value of **Working** and **Broken** be v(W) and v(B).
- $v(W) = \max\{0.32v(B) + 0.48v(W) + 40, 0.56v(B) + 0.24v(W) + 30\}$
- $v(B) = \max\{0.8v(W) 50, 0.32v(B) + 0.48v(W) + 20\}$



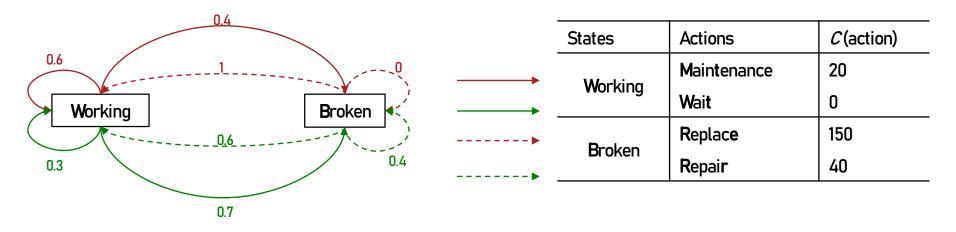
- Consider a machine that is either running or is broken.
- If it runs throughout one week, it makes a gross profit of \$100. If it fails during the week, gross profit is 0.



- Let the optimal value of **Working** and **Broken** be v(W) and v(B).
- $v(W) = \max\{0.32v(B) + 0.48v(W) + 40, 0.56v(B) + 0.24v(W) + 30\}$
- $v(B) = \max\{0.8v(W) 50, 0.32v(B) + 0.48v(W) + 20\}$

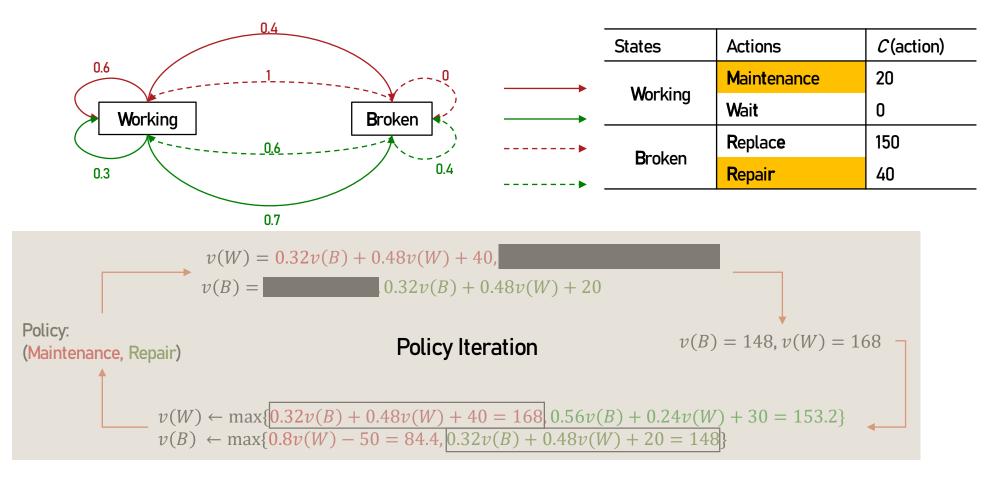


- Consider a machine that is either running or is broken.
- If it runs throughout one week, it makes a gross profit of \$100. If it fails during the week, gross profit is 0.

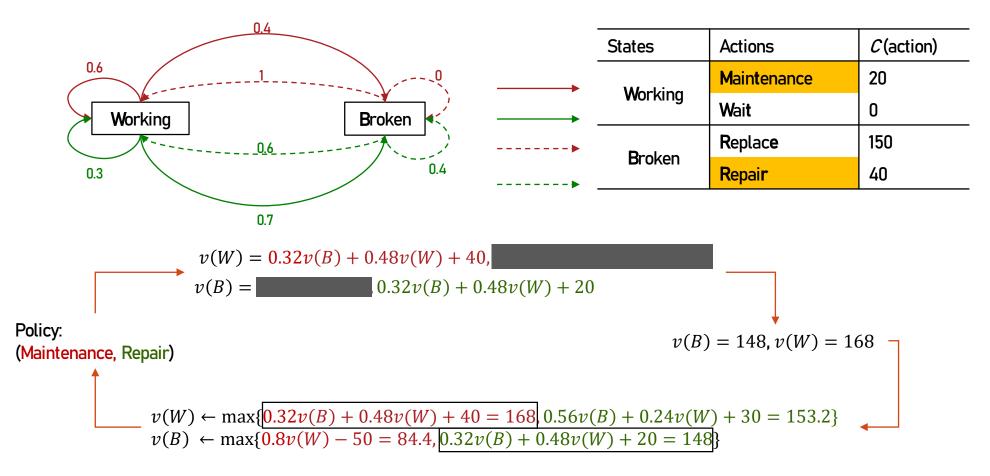


- Let the optimal value of **Working** and **Broken** be v(W) and v(B).
- $v(W) = \max\{0.32v(B) + 0.48v(W) + 40, 0.56v(B) + 0.24v(W) + 30\}$
- $v(B) = \max\{0.8v(W) 50, 0.32v(B) + 0.48v(W) + 20\}$

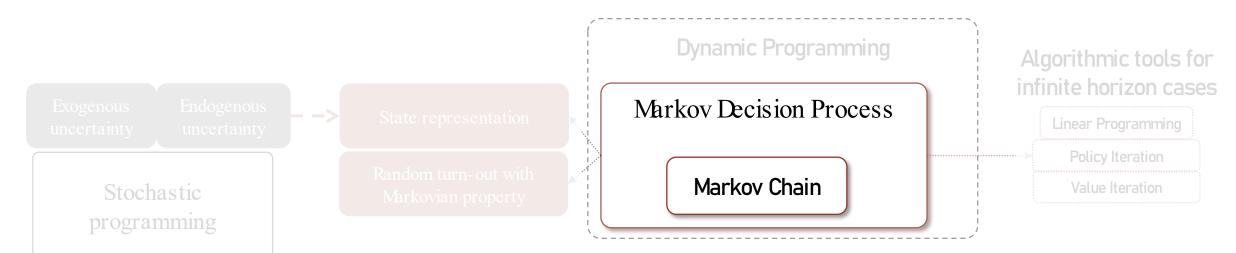
- Consider a machine that is either running or is broken.
- If it runs throughout one week, it makes a gross profit of \$100. If it fails during the week, gross profit is 0.



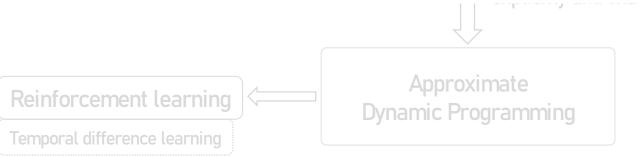
- Consider a machine that is either running or is broken.
- If it runs throughout one week, it makes a gross profit of \$100. If it fails during the week, gross profit is 0.



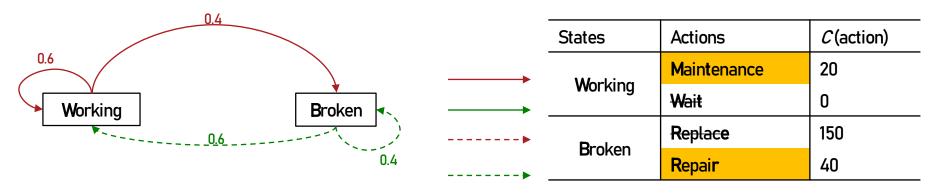
# Things to cover



- Markov Decision Process is the superstructure of Markov Chains on action space;
- Markov Decision Process reduces to Markov Chain when the actions are fixed.



- Consider a machine that is either running or is broken.
- If it runs throughout one week, it makes a gross profit of \$100. If it fails during the week, gross profit is 0.



#### Transition probability matrix

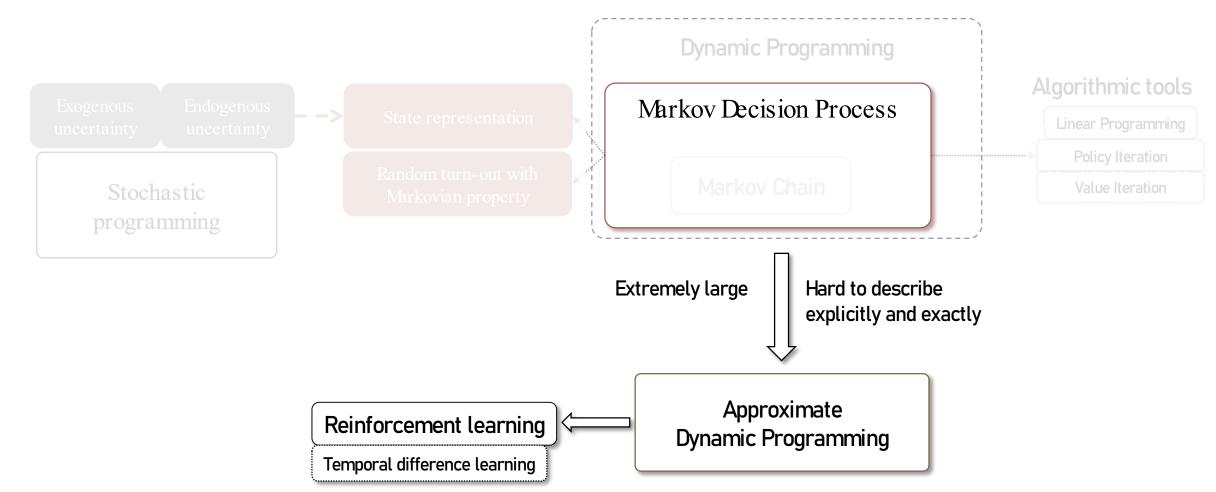
|         | Working | Broken |  |  |  |
|---------|---------|--------|--|--|--|
| Working | 0.6     | 0.4    |  |  |  |
| Broken  | 0.6     | 0.4    |  |  |  |

#### Stationary probability:

 $\begin{bmatrix} \Pr(Working), \Pr(Broken) \end{bmatrix} \cdot \begin{bmatrix} 0.6, 0.4 \\ 0.6, 0.4 \end{bmatrix} = \begin{bmatrix} \Pr(Working), \Pr(Broken) \end{bmatrix}$  $\Pr(Working) + \Pr(Broken) = 1$ 

Pr(Working) = 0.6, Pr(Broken) = 0.4

# Things to cover



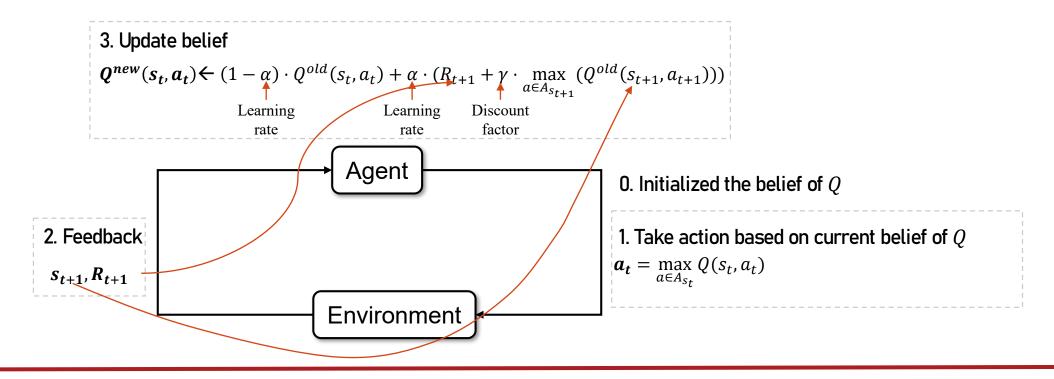
## Reinforcement learning – simulation based optimization

Temporal difference learning: update state-action value function after every interaction with the environment.

**Recall: Optimal condition**  $v(s) = \max_{a \in A_s} \{ E_{s'}(R(s, a, s')|a) + \gamma E_{s'}(v(s')|a) \}, \forall s \in S$ 

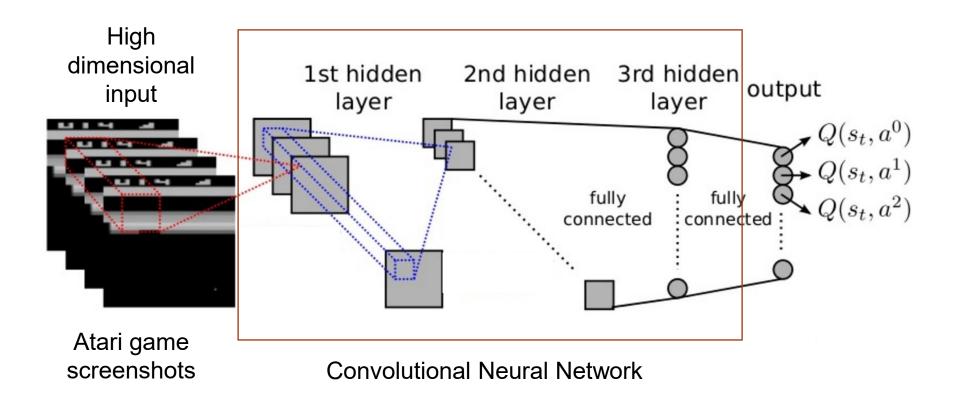
<u>Q learning:</u>

- Look-up table of  $Q(s_t, a_t)$
- Parameterize  $Q(s_t, a_t)$  with basis functions and learn the parameters via neural networks



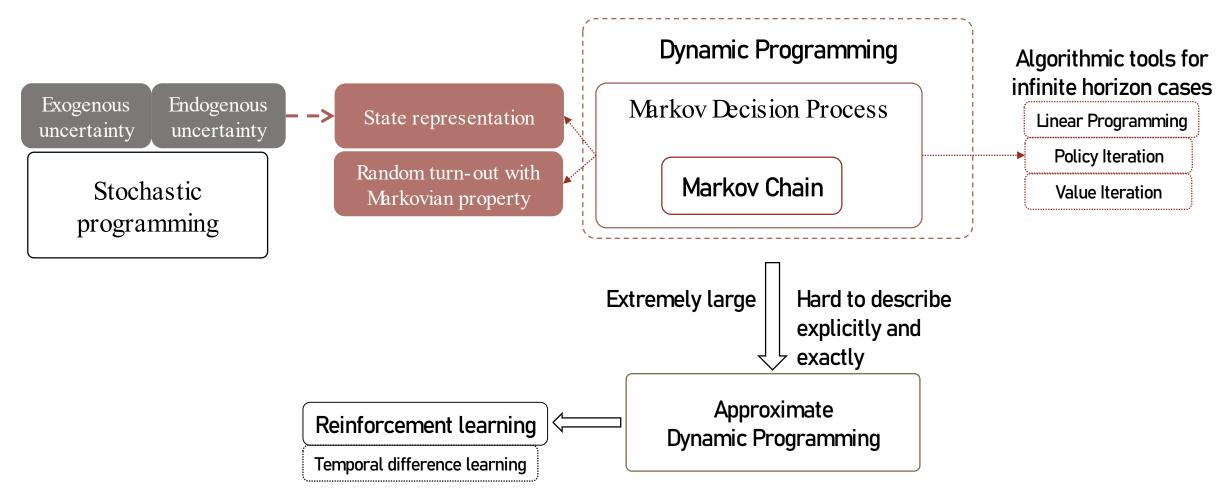
## Deep Q Networks

Mnih et al., 2013



Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

Summary



## Further extension and recommended resources

- Semi-Markov Decision Process Continuous Markov Chain
- Partially observed Markov Decision Process Hidden Markov Chain
- Time-inhomogeneous behaviors

Puterman, Martin L. *Markov decision processes: discrete stochastic dynamic programming*. John Wiley & Sons, 2014.

Bertsekas, Dimitri P., et al. Dynamic programming and optimal control. Vol. 1. No. 2. Belmont, MA: Athena scientific, 1995.

Boucherie, Richard J., and Nico M. Van Dijk, eds. *Markov decision processes in practice*. Springer International Publishing, 2017.

Alfa, Attahiru Sule, and Barbara Haas Margolius. "Two classes of time-inhomogeneous Markov chains: Analysis of the periodic case." Annals of Operations Research 160.1 (2008): 121–137.