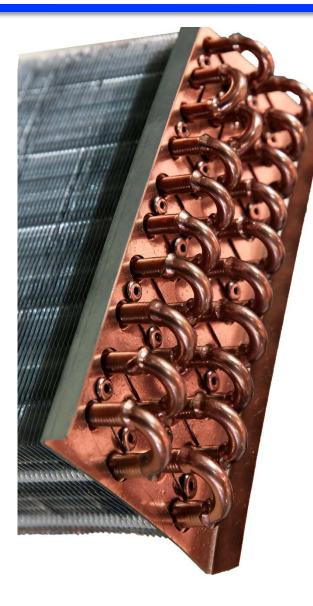


Optimization of circuitry arrangements for heat exchangers

Nikolaos Ploskas, Nick Sahinidis

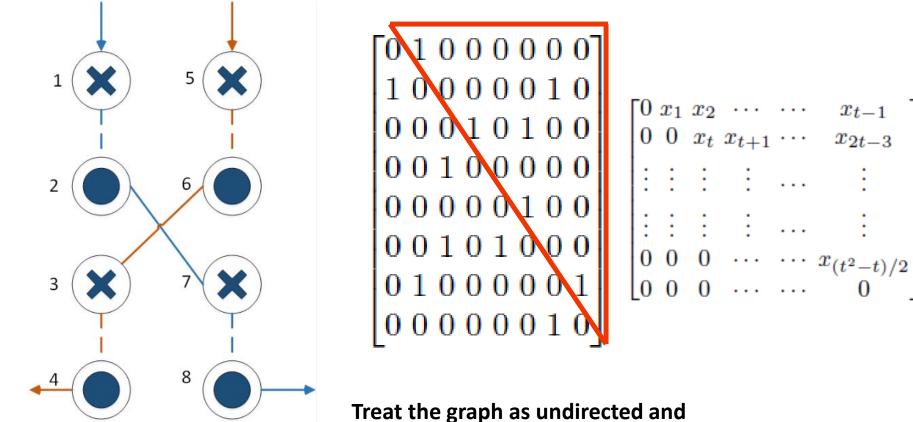
Carnegie Mellon University


Christopher Laughman, Arvind U. Raghunathan

Mitsubishi Electric Research Laboratories

MOTIVATION

- Optimize refrigerant circuitry design of heat exchangers (HEX)
- Use only realistic manufacturing constraints
- Apply derivative-free optimization (DF0) solvers
- Validate results using constraint programming


PROBLEM STATEMENT

- Develop a systematic optimization method to determine an optimal circuitry configuration
- Incorporate only realistic manufacturing constraints without requiring extensive domain knowledge
- Use detailed first-principles model to assess the performance of different refrigerant circuitry designs

- CoilDesigner

PROBLEM REPRESENTATION

Depict circuitry configuration as a graph

limit the variables to $(n^2 - n)/2$

OPTIMIZATION MODEL

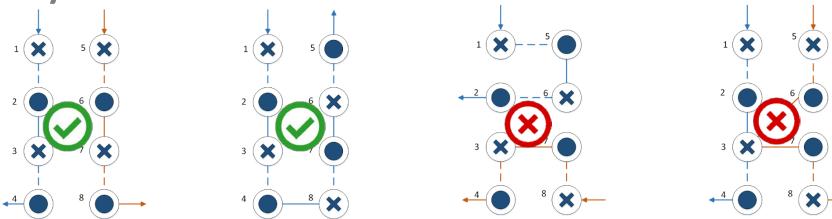
Two objective functions are considered

Maximize heat capacity

 $\max Q(x)$

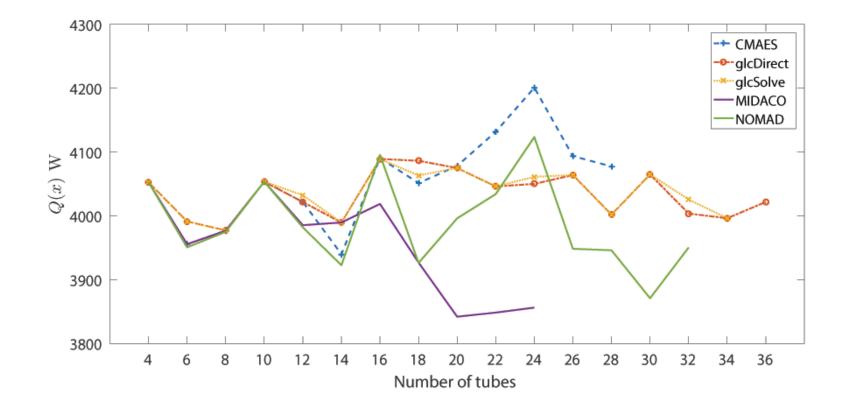
s.t. constraints on the farther end constraints on the front end $x_i \in \{0, 1\}, i = 1, 2, ..., n$

Maximize the ratio of heat capacity to pressure difference across the heat exchanger


 $\max \frac{Q(x)}{\Delta P(x)}$ s.t. $Q(x) \ge Q_{lim}$ constraints on the farther end constraints on the front end $x_i \in \{0, 1\}, i = 1, 2, ..., n$

CONSTRAINTS

- Connections on the farther end
 - Plugged tubes are not allowed
 - The connections on the farther end cannot be across rows unless they are at the edge of the coil


Connections on the front end

- Merges and splits are not allowed
- Cycles are not allowed

COMPUTATIONAL RESULTS

 Five mixed-integer constrained DFO solvers applied to solve instances with 4 – 36 tubes

VALIDATION USING CONSTRAINT PROGRAMMING

 We formulated the circuitry optimization problem as a constraint satisfaction problem using Choco solver

# of tubes	Q(x) W				$Q(x)/\Delta P(x)$ (W/kPa)			
	min	average	max	best DFO	min	average	max	best DFO
4	3,619	3,807	4,053	4,053	407	410	413	413
6	3,234	3,700	3,991	3,991	254	268	280	280
8	2,963	3,675	3,977	3,977	190	560	1,446	1,443
10	2,643	3,649	4,053	4,053	147	775	8,906	8,905
12	2,528	3,716	4,034	4,032	120	575	8,229	8,216

NOVELTY/SIGNIFICANCE

- Realistic formulation for circuitry design
- Novel binary constrained optimization model with a black-box objective function
- Five mixed-integer DFO solvers were compared
- Near-optimal solutions are found with a small number of simulations
- Constraint programming was used to verify the results for small coils

IMPACT ON PRACTICAL APPLICATIONS

- The proposed approach improves the performance of heat exchangers
 - No guarantee that a manual configuration will be optimal; a systematic optimization method is needed
 - Freeing up engineering time
- Coils with up to 36 tubes were optimized
- Memory-intensive for larger coils
- Add splits/merges to the formulation