

Optimization Modeling and
Programming in Xpress-
Mosel

Alkis Vazacopoulos
CAPD Meeting
Carnegie Mellon University
Pittsburgh, PA
March 11-13, 2007

Agenda
• Modeling Basics

– Modeling and Programming Features
– Optimization
– Deployment

• Modeling Advanced
– Algorithms
– Debugging & Profiling
– Mosel Modules
– I/O Drivers
– Model Separation

Developing an optimization model
in Mosel

• Describe the business problem in the
Mosel algebraic modeling language

• Ex: Capital Budgeting
• Set of projects with net return
• Each project has capital and personnel

requirements
• Limited capital and personnel resources
• Select set of projects to maximize return

Developing an optimization model

Building Block 1
• Model name and parameters

model "CapitalBudgeting"

uses "mmxprs" ! Use Xpress optimizer

parameters ! Change at run-time
DATA_FILE = ‘projects.dat’

end-parameters
………

end-model

Developing an optimization model

Building Block 2
• Data declaration and reading

declarations
PROJECTS : set of string
CAPITAL_MAX : real
CAPITAL : array (PROJECTS) of real

end-declarations

initializations from DATA_FILE
CAPITAL_MAX
CAPITAL as ‘CAPITAL_DATA'

end-initializations

Developing an optimization model

Building Block 3
• Variable and constraint declarations

declarations
do_project: array(PROJECTS) of mpvar

! Decision variable
MaxReturn, Capital, Personnel: linctr

! Constraints
end-declarations

forall (p in PROJECTS)
do_project (p) is_binary ! Binary variable

Developing an optimization model

Building Block 4
• Build constraints and objective

Total return is sum of selected projects returns

MaxReturn :=

sum (p in PROJECTS) RETURN(p) * do_project(p)

Developing an optimization model

Building Block 5
• Solve optimization model

maximize (MaxReturn)

Developing an optimization model

Building Block 6
• Solution

if getprobstat=XPRS_OPT then
writeln("Solution:\n Objective: ", getobjval)
forall(i in PROJECTS)

write(" x(", i, "): ", getsol(x(i)))
end-if

Deploying Optimization Models

Mosel source file

Mosel binary file

developer

end-user

• protects intellectual property

• platform independent

• efficient

More Mosel Features

• Modeling
– Variable: free, integer, partial integer, semi-

continuous, sos1, sos2

• Programming
– Dynamic arrays
– Sparse data
– Selections: if-then-elif-then-else, case
– Loops: forall, while, repeat-until

Subroutines

Functions

forward function add (a : integer, b : integer) :
integer

…..
Temp := add(10,20) ! this will return "30“
…..
function add (a : integer, b : integer) : integer

returned := a + b

end-function

Algorithms

These functionalities allow
• Multiple optimization calls in one model
• Create and solve different problems in one

model file
• Implement advanced algorithms, experiment

and try more new ideas

Benefit: Spend more time in ‘designing’
rather than ‘implementing’

Algorithms: Modifying the Problem

After solving first problem, one can
• Create ‘additional’ new variables and constraints
• Delete existing constraints
• Add / delete variables to existing constraints
• Hide / Un-hide constraints

Solve second modified problem ….

Algorithms: Modifying the Problem

Add / delete variables to existing constraints

Constraint := 5*x + 2*y <= 20
…
maximize (Objective_1)
…
Constraint += 7*y the ‘revised’ constraint is
… Constraint := 5*x + 9*y <= 20
maximize (Objective_2)
…

Algorithms: Modifying the Problem

Can implement algorithms / heuristics such as
• Chronological decomposition of planning period

in scheduling problems
• Draw efficient frontier by changing R.H.S.
• Add constraints and monitor change in objective
• Column Generation (Master and Sub-problem)

Algorithms: Interact with Optimizer

Optimizer
Solve

Program
Starts

Program
Terminates

Model
Execution

Callback
functions

Result
Retrieval

Data
Input

Output
Results

Algorithms

• Intermediate MIP solution
Set-up for integer solution

setcallback (XPRS_CB_INTSOL, "WriteReport")

! Callback to function ‘WriteReport’
……

minimize (Cost)

• Branch and Cut

Set-up for cut generation

setcallback (XPRS_CB_CM, "add_cut")

! Cut manager callback to function ‘add_cut’
……

minimize (Cost)

Algorithms: Interact with Optimizer

Debugging & Profiling

Modules

• mmodbc: ODBC connectivity
• mmquad: QP, MIQP
• mmxslp: NLP, MINLP
• mmsp: Stochastic LP, MILP
• mmive: Graphing
• mmxad: GUI builder
• kalis: CP

Extend Mosel: NI can be used to create user
defined modules

Stochastic model

• mmrng: Simulation runs
• mmsp: Stochastic LP
• mmxad: Visual Interface

I/O drivers

• Data exchange between concurrent
models:

– reading and writing data from/to memory
– synchronization of data access

1. shmem
2. mempipe

Model Separation

• module: mmjobs
• Sequential model
• Parallel model
• Exs:

– Column Generation
– Dantzig-Wolfe Decomposition

Column generation -Flowchart

Solve Knapsack
problem

Initial Master
Problem Columns

Master Problem
Solve LP

Master Problem
Solve MIP

Define new Problem

add column
Profitable
Pattern?

No

Yes

Dantzig-Wolfe Decomposition

• Multi-item, multi-period production
planning

Dantzig-Wolfe decomposition

Sub Problem
for Factory 1

dual

Sub Problem
for Factory 2

Master Problem

Proposals

Modeling statements with Xpress-Mosel and
Xpress-IVE

Modeling and programming
statements with Xpress-Mosel

Browsing the solution and model
entities in Xpress-IVE

Run statistics in Xpress-IVE

Problem matrix in Xpress-IVE

Problem matrix/solution in Xpress-IVE

Deployment wizard in Xpress-IVE

Deployment wizard in Xpress-IVE

Visualization, model controls, and
mapping with Xpress-XAD

One Program: Mosel model as
procedure called from GUI

Interactive solving through GUI
with all data in computer memory

Scenario Management

Scenario comparison/visualization

Scenario with stricter service miles
requirements and shortfalls

Visualization: Pop-up information

Visualization: Forcing facilities open
or closed

