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Project Review (1)

3

Suspension
reactor

Monomer / Initiator

Seed 
particle

Aqueous 
media

Monomer 
droplet

Strong & 
flexible

Low productivity & 
difficult to control

(Semi-Interpenetrating Polymer Network) 

SIPN



Swelling           Polymerization

Complex diffusion;
single component reaction 

Crosslinking 

Complex composite 
networking reaction 

Modeling

Project Review (2)

Control 
variables 

Optimization 
Approach

• Initial polymer 
• Monomer concentration
• Initiator concentration
• Holding temperature
• Holding duration

Semi-IPN kinetic model

Surrogate Model 

• Monomer feeding rate
• Initiator feeding rate  

Particle Growth model

Dynamic Optimization

Process Stages

Features

4



Swelling           Polymerization

Complex diffusion;
single component reaction 

Crosslinking 

Complex composite 
networking reaction 

Modeling

Project Review (2)

Control 
variables 

Optimization 
Approach

• Initial polymer 
• Monomer concentration
• Initiator concentration
• Holding temperature
• Holding duration

Semi-IPN kinetic model

Surrogate Model 

• Monomer feeding rate
• Initiator feeding rate  

Particle Growth model

Dynamic Optimization

Process Stages

Features

5

Stage I



Swelling           Polymerization

Complex diffusion;
single component reaction 

Crosslinking 

Complex composite 
networking reaction 

Modeling

Project Review (2)

Control 
variables 

Optimization 
Approach

• Initial polymer 
• Monomer concentration
• Initiator concentration
• Holding temperature
• Holding duration

Semi-IPN kinetic model

Surrogate Model 

• Monomer feeding rate
• Initiator feeding rate  

Particle Growth model

Dynamic Optimization

Process Stages

Features

6

Stage I Stage II



Swelling           Polymerization

Complex diffusion;
single component reaction 

Crosslinking 

Complex composite 
networking reaction 

Modeling

Project Review (2)

Control 
variables 

Optimization 
Approach

• Initial polymer 
• Monomer concentration
• Initiator concentration
• Holding temperature
• Holding duration

Semi-IPN kinetic model

Surrogate Model 

• Monomer feeding rate
• Initiator feeding rate  

Particle Growth model

Dynamic Optimization

Process Stages

Features

7

Stage I Stage II



New Challenges
• Continuous effect for process improvement

• Improve model reliability 
Additional information acquisition 

– Update model / parameters

• Improve solution robustness 
Uncertainty consideration

– Optimization under uncertainty 

8



Multi-scenario Dynamic Optimization
• Parameter estimation from multiple data sets

• Dynamic optimization under uncertainty 

min
μ

NSX
i=1

(yi ¡ ym
i )T §i(yi ¡ ym

i )

s:t: yi = fi(xi; μ)

hi(xi; μ) = 0

max
u;v;¿

Eμf©( _x; x; y; u; º; ¿ ; μ)g = max
u;v;¿

Z
μ2£

ª(μ)©( _x; x; y; u; º; ¿ ; μ)dμ

J0( _x(0); x(0); y; u(0); º; ¿ ; μ) = 0

h(_(x); x; y; u; v; t; μ) = 0;

g(_(x); x; y; u; v; t; μ) · 0;

S.t.
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Current Researches (1)
• Sequential approaches

• [Anderson 1978], [Rod 1980], [Reilly 1981], [Dovi 1989], [Kim 1990], 

NLP

Sub-NLP 1

Simulation 1

…

…

Sub-NLP n

Simulation n

Upper Stage

Middle Stage

Lower Stage

Computationally expensive 
for derivative evaluation( Faver 2003 ): 
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Current Researches (2)
• Simultaneous approach 

[Tjoa and Biegler1991,1992]
[Gondzio and Gothrey 2005, Gondzio and Sarkissian 2003]
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(Zavala and Biegler 2007)

where
rT
k = ¡[(rxk

Ll
k)

T ; (cl
k)

T ; (Dkx
l
k ¡ ¹Dkd

l)T ], ¢vT
k = [¢xT
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Difficult for highly nonlinear, 
ill-condition problem
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A Two-Stage Algorithm

min
μS1

f1(μ
S1 ; μL(k))

s:t: M1

min
μS2

f2(μ
S2 ; μL(k))

s:t: M2

min
μSn

fn(μSn ; μL(k))

s:t: Mn

min
μL

F (μL) =
NSX
j=1

fj(μ
L)

μL(k)

dfj

dμL(k)

;
d2fj

d2μL(k)

…

 Efficient algorithm for better behaved large inner problem
 Robust solver for well-conditioned small outer problem

12



Sensitivity from Inner Optimization Problem

• “As-NMPC”
Features: NLP sensitivity evaluation

Á(s¤(´); ´) = 0

¹K¤(´0)
@s¤
@´

= ¡@Á(s¤(´0); ´0)

@´

 Applying the implicit function theorem

 At the solution point, the primal-dual system satisfies

Substitute the right hand size with “I” at the desired parameter 
constraints
Exact gradient information is conveniently available at the optimal 
point 
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Sensitivity from Inner Optimization Problem

• Hessian evaluation
– When Hessian information is required, Hessian-

vector product is computed
 Forward difference 

 Central difference

Exact Hessian-vector product (Pearlmutter, 1994)

Operator 

Apply R{} to Gradient equation 
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Outer Optimization Problem
• Solvers: 

– Bound constrained optimization algorithms
• L-BFGS-B 

A limited-memory quasi-Newton code for bound-
constrained optimization

• TRON 
Trust region Newton method for the solution of bound-

constrained optimization problems.

• ACO
Adaptive cubic overestimation

• …
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An Illustrative Example

• Parameter Estimation from Multiple data sets
First-order Irreversible Chain reaction

Assume k2 is a Linking parameter, k1 is a separate parameter.
20 data sets were generated from model simulation. 

Outer problem solved in TRON, converged in 3 iterations.
Inner problem  solved in As-NMPC converged in 6 iterations in average.

The same optimal solution is found at the optimal.

A
k1¡! B

k2¡! C
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Current Direction
• Reduce kinetic parameter uncertainty by multi-

scenario parameter estimation

• Optimization of operation condition under 
uncertainty

• Investigation of efficient algorithm for outer 
optimization problem

• Pilot plant study for optimal solution

• Extension of model application for broader 
products
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Summary
• Multi-scenario optimization for dynamic system is 

often desired but challenging.

• Current sequential and simultaneous algorithms 
have limitations in terms of efficiency and 
robustness.

• A two-stage algorithm is proposed which takes 
advantage of efficient interior-point method and 
robust bound constraint algorithm.

• Small test problems are studied. Application to 
the process model is planned.
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Thank You !
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