

Initial Design of Experiments to Determine Feasibility to Meet Parameter Estimation Objectives *Prior to* Data Collection

Mark Daichendt, Pooja Bhalode, Lorenz Biegler

Carnegie Mellon University Pittsburgh, PA 15217

Ben Weinstein, Robert Johnson, Steve Hodson

Chemical Systems Modeling & Simulation Procter & Gamble West Chester, OH 45069

Spring EWO Meeting

14-15 March 2017

Motivation

- The Modeling & Simulation Group frequently is first engaged to perform a parameter estimation analysis *only after* all the experimental data has been collected ("inherited data")
 - Range of experimental conditions may have been insufficient
 - Limited to the Formulation Design Space
 - Some of the responses may be noisier than others
 - Low Signal-to-Noise Ratio
 - Potential responses may not have been measured in order to reduce costs
 - **Information content** may not have been considered
 - Preferable for Business to *first consult* with the Modeling & Simulation Group to determine:
 - How the *limits of the Experimental Design Space* impact
 - The *precision* of the parameter estimates
 - The *uncertainty* in the prediction
 - How *different responses* contribute to the *business objective*

Problem Statement

- **Given** a dynamic model of a reaction network generated from the CheK Library in gPROMS
- Find an optimal set of experimental design points
 - Initial concentrations, temperature
 - To be run in parallel due to the long campaign length
- That **optimize** a selected criterion of the Information Matrix
 - D/E/A-optimal Designs (maximization)
 - Covariance (minimize absolute value)
- While not adversely impacting the other criteria (parallel design)
 - Avoid designing experiments at cross purposes
 - E.g. improving one covariant element while making others worse
 - Calculate all criteria simultaneously, *one optimized, others constrained*
 - Underlying Pareto-optimal aspect to the approach
- In a *"Robust" manner* and *provide "Recourse"*

• For future sampling times and selected responses as data is collected **Carnegie Mellon**

Accomplishments & Obstacles

- Initialize multiple (>100) experiments one temporal finite element (FE) at a time while determining optimal finite element length
 - Uses current parameter estimate and experimental conditions. NEED TO:
 - Perform for worst-case initial conditions for Design of Experiments
 - Perform for worst-case parameter estimates for Robust Designs
 - Solution: Find combination that produces the largest absolute value of any component's concentration rate of change (smallest FE size)
- *Generate* the information matrix (IM) for the next-best design point (to be extended to multiple design points) *and optimize*
 - Integrating the composition profiles along with their sensitivities
 - ⁽³⁾ Optimizer does not move away from the initial guess
 - Multiple local optima
 - "Egg carton" surface

Leverage Analogous Approach

- Highly nonlinear high-fidelity adsorption models optimized using a low-order model (LOM)
 - Choose starting initial condition estimates based on factorial Design of Experiments approaches, denoted by the set *U*
 - Initial guesses for parameters, $\theta^{k=0}$
 - Initial guesses for data variance-covariance matrix $\sigma^{k=0}$
 - Instrument precision based on manufacturer's specifications
 - In-house determination (e.g. following IUPAC guidelines)
 - Demonstrated capability to initialize multiple experiments simultaneously
 - High-fidelity model results

PR

- Determine which combination of experimental points $u \in \widehat{U} \sqsubseteq U$ leads to a good $IM^{\Sigma} = \sum_{u \in \widehat{U} \sqsubseteq U} IM_u$, where IM_u is the IM for experiment u
- Fit points to a quadratic response surface model (LOM "~")
 - Predicts how the elements of the \widetilde{IM}^{Σ} change with initial conditions \widetilde{IM}_u
- Optimize the initial conditions using the LOM, denoted by the set U^*

• Update $IM^{\Sigma*} = \sum_{u \in \widehat{U}^* \sqsubseteq U^*} IM_u^*$ using the high-fidelity model **Carnegie Mellon**

P&G Design Space and Measured Responses

- Business/Technical partnership to develop a good experimental campaign
 - Size of the design space is important:
 - Effects the precision of the parameter estimates
 - Experiments can be run more quickly at more aggressive conditions
 - Early initial data \rightarrow early parameter estimates
 - Recourse for future sampling times and measurements
 - Design new experiments for remaining horizon
 - Early adjustments to formulation
 - Which responses are measured brings different information content
 - Understand from the onset how including or excluding particular responses affects the information matrix
 - Impacts the rank of the matrix
 - Impacts the precision of the parameter estimate

P&G Design Spaces

- Distinguish between
 - Experimental Design Space
 - Formulation Design Space
- Experimental Design Space depends on
 - Equipment limitations
 - Short-term thermal degradation, etc.
- Desire largest possible Experimental Design Space
 - (Bard) Optimal Design Points usually have at least one variable at a bound
- Variance-Covariance matrices of both the *parameters* and the *data* impact the prediction uncertainty
- Sample data within the Formulation Design Space to
 - Assess prediction accuracy
 - Hold out data
 - Fine tune the parameter estimates

P&G Selected Interface Menus Guide Consult

Design of Experiments with Parameter Estimation				- e e Experimental Design					
			Explorer Bar Input Parameters to be estimated	1. What is the available Design Space? (Variables to be taken into consideration)					
Selection of Parameters to be estimated			Experimental Design	Concentration					
			Initial Exp. Design Points	Temperature					
Select all the parameters to be estimated: Select all Deselect all		Deselect all	Responses to be measured		Concer	tration Tempe	ratura		
1. Reversible reaction001			Campaign Structure		Concer	itration rempe	hature		
	🗸 K_eq			Campaign Cutoff Criteria Robust Design		Reactants	Intermediates	Products	
				Analysis Output	Experimental Range				
$A + B \rightleftharpoons D$	ΔHrxn			Simulate Experiments	For Parameter Estimation				
	🗸 k_f			Calculate sensitivity		Average	Lowest	Highest	Units
	C Eact_f			Calculate Info Matrix	A 🔽	150	100	200	µmol/L
				Generate best info Matrix	🔽 B	200	150	250	µmol/L
2. Simple reaction001				Calculate Low Order Model					
	🗸 k			Optimize IC for IM(LOM)	C	30	10	50	µmol/L
A + C → E	Eact			Calculate accurate IM based on LOM IC	Formulation Range				
A + C - 7 E				Robust Design Output	For Prediction Accuracy				
	Order of reaction:	Reactant A	N			Anticipated	Lowest	Highest	Units
		Reactant C	;		🛛 A	125	110	135	µmol/L
			Submit		💟 В	180	160	210	µmol/L
				1	C 💟	20	15	30	µmol/L
								Check and Submit	100

Design of Experiments with Parameter Estimation . . . Campaign Cutoff Criteria . . . Explorer Bar Explorer Bar Enter the maximum number of experiments that can be performed: Input Input ... Measurement of responses 100 Parameters to be estimated Lower limit = Number of parameters to be estimated Parameters to be estimated Concentration values Campaign optimality objective: Experimental Design Experimental Desig A-Optimality Initial Exp. Design Points Initial Exp. Design Points Reactants Intermediates Products D-Optimality Responses to be measured Responses to be measured Select the reactants for measurement: E-Optimality Campaign Structure Campaign Structur A 10 Parameter Co-variance Campaign Cutoff Criteria Campaign Cutoff Criteria 🔽 B Next Robust Design Analysis C Analysis Convergence Criteria (Relative change in the optimality criteria): Output Output Minimum relative change in optimized criteria to have an additional experiment Simulate Experiment Simulate Experimen D-optimality: 0.05 Analytical Instrumentation Precision: Calculate sensitivity Calculate sensiti eriments needs to be taken into consideratio +/- (95%' confidence limits) Enter Precision Calculate Info Matrix Calculate Info Matrix Calculating Info Matrix for each experiment Generate best info Matrix Generate best info Matrix 1. Reactant A: Percentage of measured value (Relative): Select the experiment to display the information matrix: Calculate Low Order Calculate Low Order Model Concentration value (Absolute): % Mode Optimize IC for IM(LOM) Optimize IC for IM(LOM) Experiment 1 Percentage of measured value (Relative): 2. Reactant B: Calculate accurate IM based on LOM IC Calculate accurate IM based on LOM IC Concentration value (Absolute): mmol/L Submit Robust Design Output Robust Design Output 3. Reactant C: Percentage of measured value (Relative): Info Matrix (IM) for Experiment 1 ~ Concentration value (Absolute): θ_1 θ_2 θ_3 θ_4 Display best IM: 0 0 0 0 θ_1 K_eq θ_2 k_f 0 0 0 0 θ3 0 0 0 0 Eact f θ_4 0 0 0 0 k Main Window Main Window

P&G

Novelty/Significance of Work

- Large-scale optimization capability of IPOPT
- Port to open-source PyOMO / Python platform
- Dynamic optimization using Orthogonal Collocation on Finite Elements
- Simultaneous direct evaluation of sensitivities
- Simultaneous calculation (to optimize or constrain) the various DoE objectives of the information matrix
- Parallel experimental campaign structure due to long duration
- Design for multiresponse data with "missing observations"
 - Account for both cost and information content of a measured response
- Incorporate "Robust" experimental design methodologies
 - Reduce dependence on initial parameter guess
 - Best design for worst-case parameters values
- Provide "Recourse" by
 - Performing parameter estimates throughout the campaign
 - Updating sampling times for specific responses

Designing additional experiments for remaining campaign horizon
Carnegie Mellon

P&G Impact for Industrial Applications

- Create the incentive for the Business Area to *first consult* with the Modeling & Simulation Group to determine, *before any experiments are conducted and measurements are taken*:
 - Whether or not the contemplated *experimental campaign* can achieve the desired *business objective*
 - If not, utilize the tool to determine the impact of:
 - Extending the limits on the *Experimental Design Space*
 - Including *responses* that may be *less noisy* and/or provide significantly *better information content*
- *Reduce cost* of running an "ad-hoc" (versus "model-based" or "systematic") campaign with the associated cost and time that
 - May generate *data with limited information content*
 - *Cannot be analyzed* to determine if the business objective can be met
- Paradigm shift to start with a parallel Design of Experiments before gathering any data by leveraging the reaction network model