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Motivation

e Consumer products may be subject to
prolonged storage and transportation times

» Ensuring Product Quality and Stability is a
critical and time-consuming activity
+ Shelf-lives typically measured in years

+ Need to understand impact of formula design on
product performance and stability

e Undesirable chemical reactions may lead to
product degradation

m o Develop a suite of modeling tools to support the
development of new consumer products:

¢ Simulate product chemistry

+ Design efficient experimental campaigns

+ Discriminate among alternative models and
estimate model parameters

+ Understand the uncertainty associated with
model predictions
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CHRD
PG Problem Statement %

* Given a set of alternative kinetic models and an experimental
design space:
+ Generate an initial set of experiments

+ Perform sequential Design of Experiments for Model Discrimination
based on posterior probability share

¢ Determine Global Sensitivity of Model Parameters
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+ Perform sequential Design of Experiments to improve Parameter

Estimates guided by sensitivities
¢ Perform Uncertainty Quantification
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PeG Leverage gPROMS Modeling Environment J%\F

CENTER

with CheK Library to Input Kinetic Models

Cano and Goda (2014)
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CHPD
FeG Leverage Prior Interface Work Between j\‘/\f
gPROMS and DynOpt (Collocation + IPOPT)

Lang and Biegler (2005, 2007)
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e ESO provides Function Evaluations, Jacobian and
Residuals at Collocation Points. DynOpt returns
Values of the Optimization Variables.

« ESO functionality not currently
accessible in gPROMS

 Project will provide Proof-of-
Concept Solution using PyOMO

« Long-term goal remains to
leverage CheK with IPOPT
capabilities 5
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CrED
Proposed Solution Method j\‘/\f

Adapted from www.Eurokin.org

Fundamentals
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Kinetic Databases

Microkinetic Models

Ab-initio Calculations
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1. Model Discrimination
2. Parameter Estimation

Design of Experiments

Model
Evaluation
(GSA¥*)

Decision-making for model development
- Versatile, interactive user interface
Fast, reliable numerical tools
Integrated data, tasks and results
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Uncertainty
Quantification

Global Sensitivity Analysis 5



CHPD
FeG Model Discrimination Methodology j\‘/\f

Schwaab et al. (2008)
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Key contributions of the method:
1. Probability weighting to focus on discriminating between the two best models
2. Calculating the posterior covariance matrix of model parameters at Xy,
. 3. (2)is used to calculate the posterior covariance matrix of predictions at Xy,
Carneg]eMell()n 4. Discriminant is based on large posterior prediction differences and/or small variances

5. No further discrimination possible if, for Z=0, D, ,(Xy.1) < # of responses



FPsG Unique Project Aspects ci

o Optimization with s-IPOPT using Analytic Hessian in PyOMO
¢ Determine parameter sensitivity to noise in the data
+ Identify problematic 2"d-order conditions:
Zero curvature: unbounded confidence region
Indefinite curvature: saddle point (rare)
¢ Create ability to compare Analytic Hessian results with:
Gauss-Newton: ~gPROMS ESO with IPOPT
BFGS: ~Internal gPROMS Hessian for DoE/PE

* Orthogonal Collocation on Finite Elements = DAE to NLP
¢ Restricts unstable nodes within finite element (Robust)
Sequential simulation/optimization may fail if IVP open loop unstable
¢ Efficient computation using simultaneous approach (Fast)
Avoids overhead of sensitivity calculations from DAE solver
+ Auvoids convergence failure due to large gradient errors (Accurate)
DAE solver’s internal convergence loops — “convergence noise”



PeG Novelty/Significance of Work d\i;\g

« Leverages contributions from several fields:

+ Math Programming-based Bayesian methodology (e.g. Warren Stewart,
G.E.P Box) for Design of Experiments for

Model Discrimination
Parameter Estimation

+ Incorporation of “Robust” (i.e. distribution-free) alternative methods
May be particularly advantageous for small number of experiments

+ Global Sensitivity Analysis (Stochastic Simulation)
Accounts for both Numerical Sensitivity and Parameter Uncertainty
Provides relative ranking of importance of each parameter
+ Uncertainty Quantification (Stochastic Simulation)
Propagation of Parameter Uncertainty
Quantification of model discrepancies
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FeG Potential Impact for j\‘/\ﬁ

Industrial Applications

» Biegler group has solved large and/or complex parameter estimation
problems using IPOPT

+ Zavala and Biegler (2006) 54 parameters for homo- and copolymer reactions
included Error-in-Variables-Measured (EVM)

¢ Zavala, Laird and Biegler (2008) 57 parameters for LDPE tubular reactor,
including EVM. Solved in parallel using a Schur complement decomposition
approach

¢ Lin, Biegler, Jacobsen (2010) 15 parameters to predict particle growth
dynamics, polymerization rate and particle average molecular weight for a
seeded suspension polymerization process
« Working with Python-based PyOMO removes limitation on
available gPROMS licenses to perform parallel simulations for
Global Sensitivity Analysis and Uncertainty Quantification

e Bock’s group at University of Heidelberg has had success with
Robust methods working with BASF
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