

Planning and scheduling of PPG glass production, model and implementation.

Ricardo Lima Ignacio Grossmann rlima@andrew.cmu.edu

Carnegie Mellon University

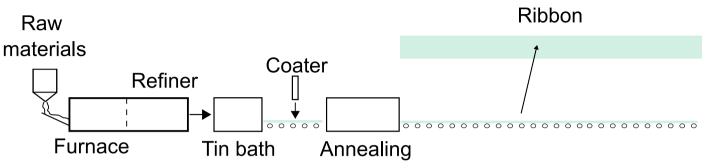
Yu Jiao

PPG Industries

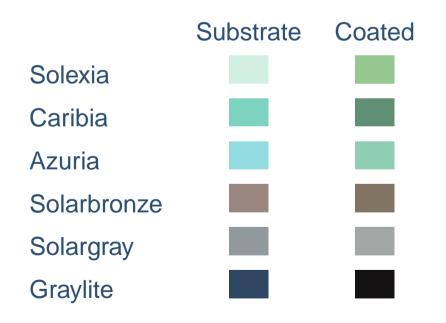
Glass Business and Discovery Center

Objectives:

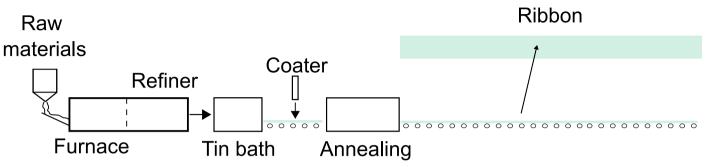
- 1. Development of a Mixed Integer Linear Programming (MILP) model for the **planning and** scheduling of the glass production
 - Capture the essence of the process that is not considered in the Master Production Schedule
 - Management of waste glass (cullet)
- 2. Implement a user-friendly software tool to interface with the GAMS model.
 - Current status: software tool and model is being tested by the supply chain group.

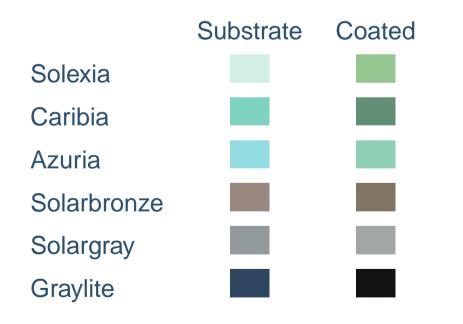

Objectives:

- 1. Development of a Mixed Integer Linear Programming (MILP) model for the **planning and** scheduling of the glass production
 - Capture the essence of the process that is not considered in the Master Production Schedule
 - Management of waste glass (cullet)
- 2. Implement a user-friendly software tool to interface with the GAMS model.
 - Current status: software tool and model is being tested by the supply chain group.
- 3. Increase the number of attributes of the products, add thickness as an attribute. Currently products are defined by color (substrate and coating).
- 4. Evaluate the scheduling robustness under uncertainty in some parameters.



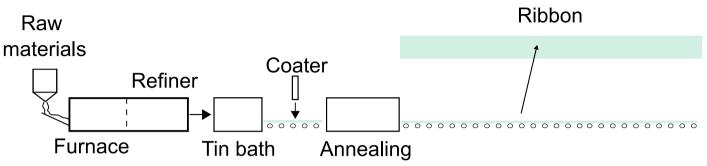
Continuous process:


Products defined by color



Continuous process:

Products defined by color


Features

- Raw materials define color of the substrate
- Sequence dependent changeovers between substrates
- No transition times between substrate and coated products

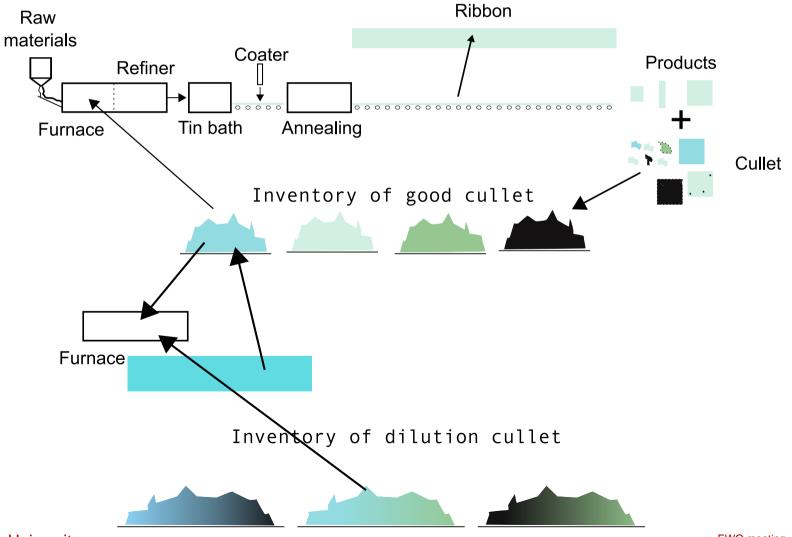
Continuous process:

Products defined by color

Features

- Raw materials define color of the substrate
- Sequence dependent changeovers between substrates
- No transition times between substrate and coated products
- Long transition times (order of days)
- High transition costs
- Continuous operation during changeover
- Minimum run length (days)

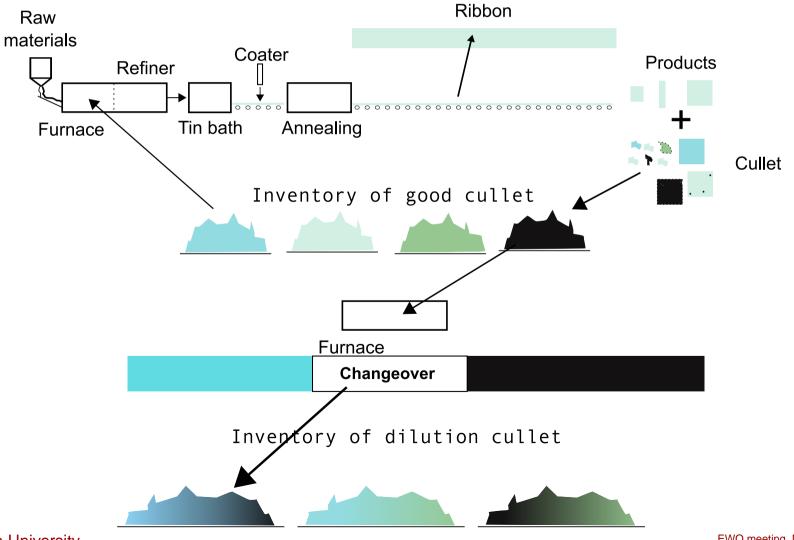
Good cullet: generated during the production run


Dilution cullet: produced during changeover from one substrate to other substrate

Good cullet: generated during the production run

Dilution cullet: produced during changeover from one substrate to other substrate

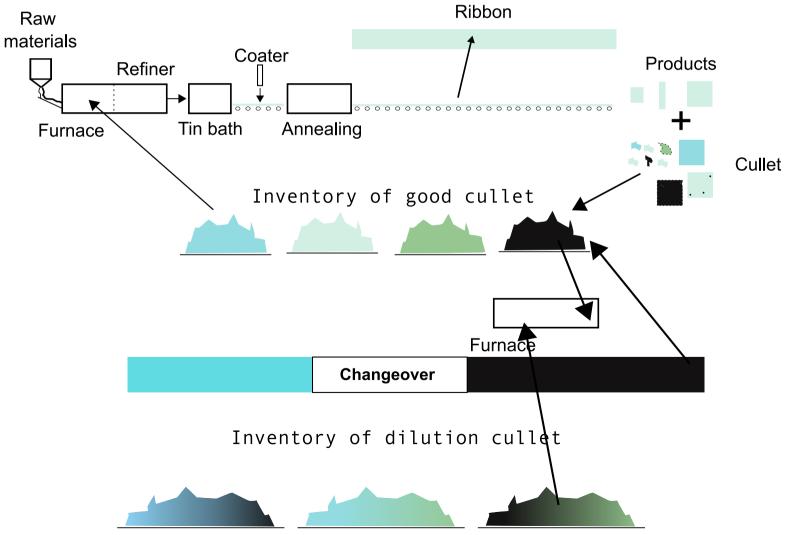
Carnegie Mellon University


EWO meeting, March 2011 - p. 4

Good cullet: generated during the production run

Dilution cullet: produced during changeover from one substrate to other substrate

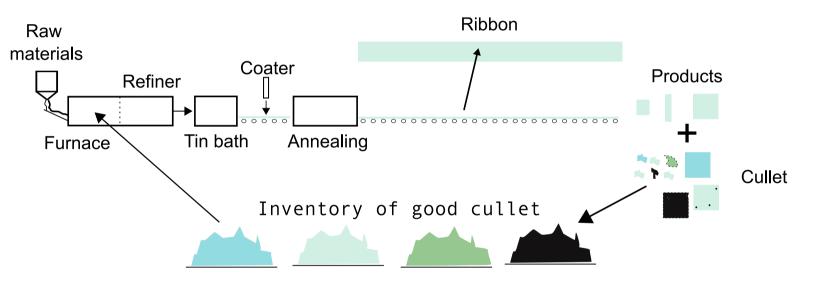
Carnegie Mellon University


EWO meeting, March 2011 - p. 4

Good cullet: generated during the production run

Dilution cullet: produced during changeover from one substrate to other substrate

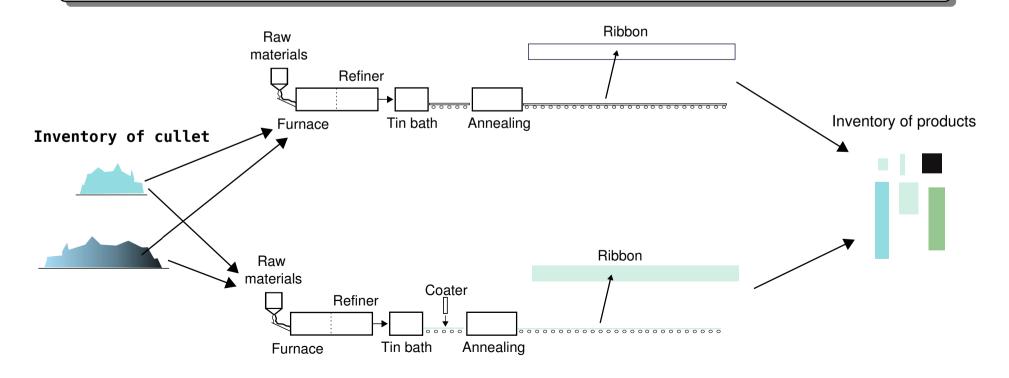
Carnegie Mellon University


EWO meeting, March 2011 - p. 4

Good cullet: generated during the production run

Dilution cullet: produced during changeover from one substrate to other substrate

- The schedule determines the amount of cullet generated.
- The cullet in stock must meet the schedule requirements.



Good cullet: generated during the production run

Dilution cullet: produced during changeover from one substrate to other substrate

The tinted glass production can be distributed by two lines, which are integrated by a common set of products, cullet production, consumption and storage, and by the glass products storage.

- Scheduling model: slot based continuous time model (Erdirik-Dogan and Grossmann, 2008)
 - detailed timing of the schedule

Planning model: traveling salesman sequence based (Erdirik-Dogan and Grossmann, 2008)
 Integrated using rolling horizon algorithms to cope with the complexity of the problem. (Lima and Grossmann, 2011)

Models implemented:

- Scheduling model: slot based continuous time model (Erdirik-Dogan and Grossmann, 2008)
 - detailed timing of the schedule

Planning model: traveling salesman sequence based (Erdirik-Dogan and Grossmann, 2008)
 Integrated using rolling horizon algorithms to cope with the complexity of the problem. (Lima and Grossmann, 2011)

Size and performance of the models, for two different case studies Application of both models **without using a rolling horizon algorithm** Time horizon = 2 months, time periods = 1 month, 22 products without cullet

Scheduling model

Iteration	Equations	Variables	0-1 Variables	CPU (s)	RGap (%)	Obj		
1	4,207	3,253	1,219	98.0	0.0	1,938.05		
Bi-level decomposition, first the planning model and then the scheduling model								
Iteration	Equations	Variables	0-1 Variables	CPU (s)	RGap (%)	Obj		
1	1,625	1,467	601	0.4	0.0	1,938.48		
1	2,046	2,082	169	0.2	0.0	1,938.05		

Obj - value of objective function, profit.

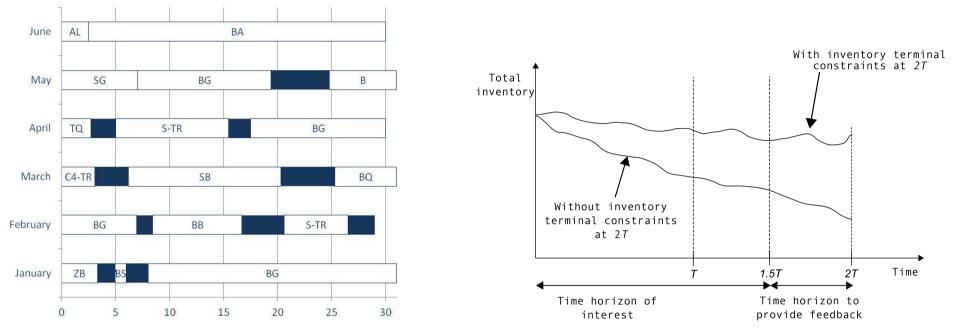
Models implemented:

- Scheduling model: slot based continuous time model (Erdirik-Dogan and Grossmann, 2008)
 - detailed timing of the schedule

Planning model: traveling salesman sequence based (Erdirik-Dogan and Grossmann, 2008)
 Integrated using rolling horizon algorithms to cope with the complexity of the problem. (Lima and Grossmann, 2011)

Size and performance of the models, for two different case studies

Application of both models **using** a rolling horizon algorithm Time horizon = **15 months**, time periods = 1 month, 22 products **with cullet**


Iter.	Equations	Variables	0-1 Variables	Slots	CPU (s)	RGap (%)	Obj
1	10,072	12,516	3,350	-	3,600	14.1	6,936
2	13,977	19,500	2,384	9	100	0.0	-2,970
3	20,155	26,402	4,473	9	3,600	5.0	534
4	21,823	31,205	2,576	17	200	0.0	-6,136
5	28,213	38,177	4,673	17	3,600	1.7	-2,127
6	28,461	41,052	2,629	23	100	0.0	-5,290
7	34,914	48,042	4,821	23	3,600	5.4	-1,424
8	36,546	52,836	2,893	31	3,600	0.6	-4,794
9	43,062	59,844	5,032	31	3,600	6.2	-1,162
10	43,416	62,750	3,004	37	3,600	0.7	-4,291

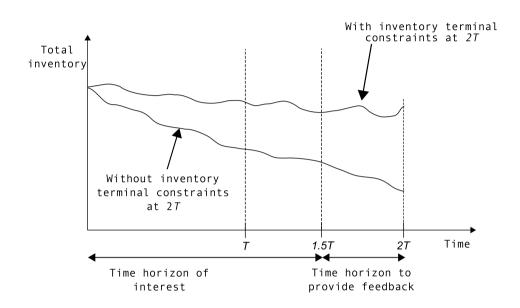
Obj - value of objective function, profit, but including penalties for violation of some constraints. Carnegie Mellon University

First Gantt chart presented at the plant

Features of the process not captured:

- 1. Minimum run lengths (to keep process stability)
- 2. Relation between production time of substrate and substrate + coating (specific setup time)
- 3. Control of the inventory at the end of the time horizon

Initial model limitations:


- 1. Transition times across time periods
 - (a) model only allowed transitions at the end of the time period
- 2. Cullet storage, consumption and production

First Gantt chart presented at the plant

Features of the process not captured:

- 1. Minimum run lengths (to keep process stability)
- 2. Relation between production time of substrate and substrate + coating (specific setup time)
- 3. Control of the inventory at the end of the time horizon

Initial model limitations:

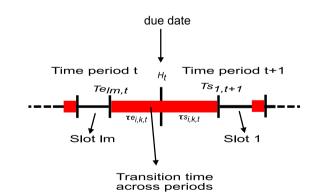
- 1. Transition times across time periods
 - (a) model only allowed transitions at the end of the time period
- 2. Cullet storage, consumption and production

Definition of a family of pseudo-products, and the products are the members of the family

- 0-1 variables are defined over the pseudo-products
- Each pseudo-products aggregate the production time of all members of the family (products) $\tilde{\theta}_{i,t} = \sum_{p \in FAM_i} \tilde{\theta}_{2p,t}^2 + \delta_p Y P_{p,t} \quad \forall i \in I, t \in T$
- Inventory levels are calculated for each product

 $INV_{p,t} - BCKL_{p,t} = INV_{p,t-1} - BCKL_{p,t-1} + r_p \,\tilde{\theta 2}_{p,t} - S_{p,t} \qquad \forall p \in P, t \in T$

Production time of the substrate must be equal to the production time of the substrate + coating

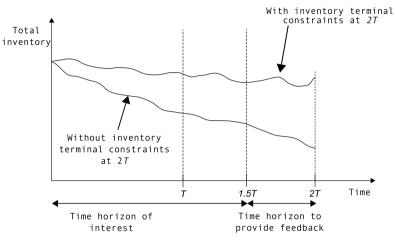

Changeovers across time periods (Lima and Grossmann, 2011)

$$\tau_{i,k}TRT_{i,k,t} = \tau e_{i,k,t} + \tau s_{i,k,t+1} \quad \forall i, k \in I, t \in T$$

$$Te_{l,t} + \sum_{i \in I} \sum_{k \neq i \in I} \tau e_{i,k,t} = HT_t \quad \forall l \in LL, t \in TS$$

$$Ts_{l,t} = \sum_{i \in I} \sum_{k \in I} \tau s_{i,k,t} + HT_{t-1} \quad \forall l \in LF, t \in T$$

$$\sum_{i \in I} \sum_{k \in I} \tau s_{i,k,t} + \sum_{i \in I} \sum_{l \in L} \theta_{i,l,t} + \sum_{i \in I} \sum_{k \in I} \sum_{l \in L} \tau_{i,k} Z_{i,k,l,t} + \sum_{i \in I} \sum_{k \in I} \tau e_{i,k,t} = H_t \,\forall t \in T$$


Minimum run length across time periods are enforced using:

 $\tilde{\theta}_{i,t} + \sum_{t' \in B_{i,t}} TPB_{i,t'} + \sum_{t' \in A_{i,t}} TPA_{i,t'} \geq MRL_i YOP_{i,t} \forall i \in IM,$ Production time t + P roduction time t - 1 + P roduction time t + 1the processing time of t - 1, $\tilde{\theta}_{i,t-1}$, and $t, \tilde{\theta}_{i,t}$, are only used if there is a transition between the same product across the time period ($TRT_{i,i,t} = 1$):

$$\begin{bmatrix} TRT_{i,i,t} \\ TPB_{i,t} = \tilde{\theta}_{i,t} \end{bmatrix} \lor \begin{bmatrix} \neg TRT_{i,i,t} \\ TPB_{i,t} = 0 \end{bmatrix} \qquad \forall i \in IM, t \in T$$
$$\begin{bmatrix} TRT_{i,i,t-1} \\ TPA_{i,t} = \tilde{\theta}_{i,t} \end{bmatrix} \lor \begin{bmatrix} \neg TRT_{i,i,t-1} \\ TPA_{i,t} = 0 \end{bmatrix} \qquad \forall i \in IM, t \in T$$

Approach implemented: a minimum inventory above the safety stock for each product, which is enforced *N* time periods after the time horizon of interest.

Alternative approaches:

- 1. Re-schedule periodically and postpone the depletion of the inventory
- 2. Add the value of the final inventory in the objective function
 - the final inventory value is a piecewise linear function of the final inventory (Martin et al. 1993)

Days of sales	Value
1-60	90%
61-120	70%

Remark: If in the optimal solution exists backlog, the product with the lower price among the products that may have backlog will be selected.

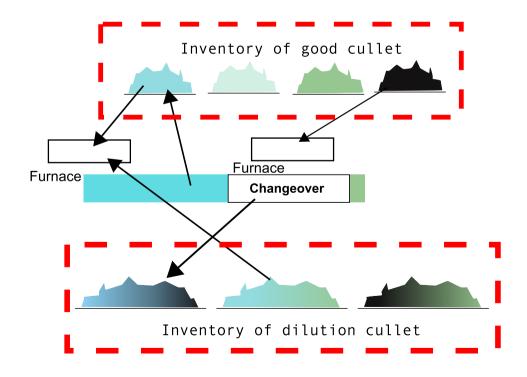
- Mass balance to the process (good and dilution cullet)
 - The consumption of cullet is a nonlinear function of the production length
 - δ -form **piecewise linear formulation (PLF)** to approximate the cullet consumption
 - The cullet consumption profile has 2 operating options for the total, good, and dilution cullet, (tc1,dc1,gc1) or (tc2,dc2,gc2)

$$Z1_{i,l,t}$$

$$tc1_{i,l,m,t} = b_{i,0,t}ZNS_{i,l,m,t} + \left(\frac{b_{i,1,t} - b_{i,0,t}}{a_{i,1,t} - a_{i,0,t}}\right)\delta_{i,l,m,t}^{1} + \left(\frac{b_{i,2,t} - b_{i,1,t}}{a_{i,2,t} - a_{i,1,t}}\right)\delta_{i,l,m,t}^{2}$$

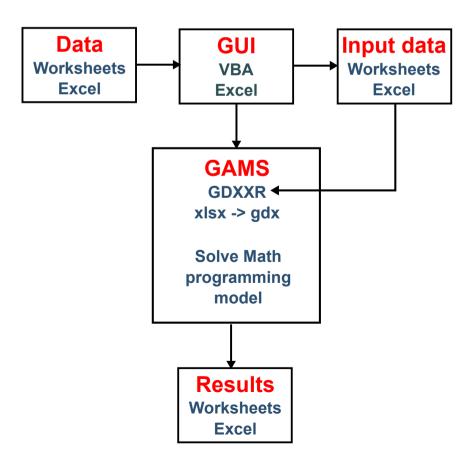
$$dc1_{i,l,m,t} \le db_{i,0,t}ZNS_{i,l,m,t} + \left(\frac{db_{i,1,t} - db_{i,0,t}}{a_{i,1,t} - a_{i,0,t}}\right)\delta_{i,l,m,t}^{1} + \left(\frac{db_{i,2,t} - db_{i,1,t}}{a_{i,2,t} - a_{i,1,t}}\right)\delta_{i,l,m,t}^{2}$$

$$\neg Z\mathbf{1}_{i,l,t}$$

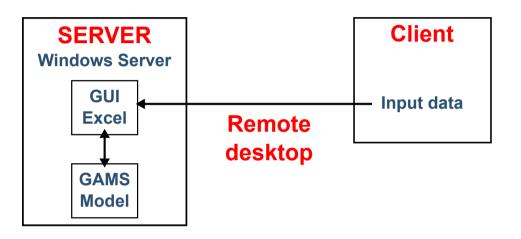

$$tc2_{i,l,m,t} = b'_{i,0,t}ZNS_{i,l,m,t} + \left(\frac{b'_{i,1,t} - b'_{i,0,t}}{a'_{i,1,t} - a'_{i,0,t}}\right)\delta^{1}_{i,l,m,t} + \left(\frac{b'_{i,2,t} - b'_{i,1,t}}{a'_{i,2,t} - a'_{i,1,t}}\right)\delta^{2}_{i,l,m,t}$$

$$dc2_{i,l,m,t} \le db'_{i,0,t}ZNS_{i,l,m,t} + \left(\frac{db'_{i,1,t} - db'_{i,0,t}}{a'_{i,1,t} - a'_{i,0,t}}\right)\delta^{1}_{i,l,m,t} + \left(\frac{db'_{i,2,t} - db'_{i,1,t}}{a'_{i,2,t} - a'_{i,1,t}}\right)\delta^{2}_{i,l,m,t}$$

- Mass balance to the inventory (good, and dilution cullet) on a slot basis in the scheduling model and time period basis in the planning model
- Cullet inventory constraints
- Option to sell cullet with a penalty
- Synchronization of cullet storage, consumption and production
 - based on no simultaneous production or consumption of one type of cullet cullet in the same time period.



Software structure


- Main components: Model, GAMS, Excel
- Graphical User Interface (GUI) developed in VBA for Excel
- Manipulation of input data and output results structure developed in VBA for Excel
- The transfer of data from Excel to GAMS is made using gdx files

The software is installed in a Server running Windows Server, and the access is made using remote desktop.

Advantages

- 1. The software is only installed in **one machine**.
- 2. Easy to maintain, update, and enhance the software.
- 3. Log off the system and leave the **optimization running in the server**.

GUI to define parameters of the problem

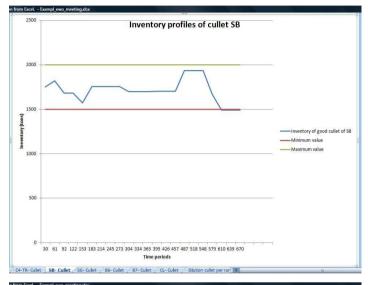
Assign products to product oducts in the system Azurlite Caribia GL-20 Graylite Optiblue Optiblue Optigray Solarcool Azuria Solarcool Caribia Solarcool Solargray Solarcool Solargray Solarcool Solargray Solarcool Solargray Solarcool Solargray	tion lines. Products assigned to Line 4-1 Azurlite Caribia GL-20 Graylite Optiblue Optigray Solarccol Azuria Solarccol Caribia Solarccol Caribia Solarccol Solargray Solarccol Solargray Solarccol Solargray Solargren C4 Solargray Solargray Solargray	Products assigned to Line 4-2 Azurlite Caribia GL-20 Graylite Optigray Solarcool Azuria Solarcool Caribia Solarcool Caribia Solarcool Solarbronze Solarcool Solargray
Solex trade Solextra Vistaccol Azuria Vistaccol Caribia Vistaccol Caribia Vistaccol Caribia All None Dated products not assigned to production lim cated products not assigned to production lim Cose Cose Cose Cose Cose Cose Cose Cose	Solex trade Solextra Vistacool Azuria Vistacool Caribia Vistacool Solargray	Solex trade Solex

Gantt chart and inventory results

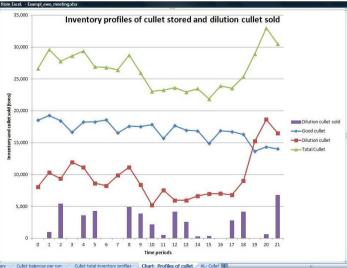
	Number of transition days: 75. Number of production days: 2		G	antt chart				
				Day of the month				
	0 1 2 3 4	5 6 7 8 9 10	11 12 13 14		8 19 20 21	22 23 24	25 26 27	28 29 30
1	\$8.5.41		SG, 10.52				C4-TR, 7.2	
2	\$ #25	B6,8.33	2	87,7.9	9	5815	SB,	6.3
3	\$8,7.6	3.54		VG, 8.56		5.21	\$6,	6.09
4		\$G, 17.9			1.5	SB, 5	3.42	ZB, 2.18
5	ZB, 5.38	4.33		AL,10.11	100 BA	3	SB, 8.05	
6		58, 14.32 Series "TRT" Data La	pels	3.54		VG, 12.0	19	
7	VG, 6.96	5.21			56, 3	18.83		
8	5	86,8.34		2	В	7,13.03		2.63
9	061	SB, 16.11			5		NL, 6.39	
0		AL,2	1.2			3.33	SG, 6	.47
1		\$G, 20.5	3			5	C4-TR	4.47
2	C4-TR, 4.65	686		S8, 17.65			3.42	ZB, 2.
3	ZB, 6.96	2		B6,14.52			B7,4	.51
4		B7, 17.33			3.13		SG, 10.55	
5	5G, 3.83		s	8, 18.61			3.54	VG, 3.52
6	VG,7.4	5.21	a and a second sec		SG, 17	WALK PROPERTY OF		
7	100 0000 00	SG, 10.8	5.42			AL, 14.78		states
8	AL, 3.09	and the second se	C4-TR, 7.65	3.13		SB, 8.14		3.42
9	ZB, 5	56, 5 58, 16.65		5.42	VG, 5 SG, 5		5.21	SB, 2.67 VG, 2.
1	VG.2.94	5521		\$6, 15.9	30,3	-	4.96	V0, 2,
÷.,	10, 6, 24	3.62		30, 15,9		-	4.90	

Results:

- Summary economic results
- Profit contribution by product, detailed results by product
- Gantt charts for both lines, and production description by text (sort by date and products)
- Inventory profiles for all products



Consumption of dilution cullet bu run


VG SG VG 3 1 SB VG SG 3 2,702 I2 SB SG SB 4 272 I3 C4-TR CL AL 5 53 I4 SG C4-TR SB 5 1,436 I5 SG SB SB 5 995 I6 VG SG 7 1,820 I8 SG C4-TR SB 9 1,355 I9 CL C4-TR SB 9 1,355 I9 CL C4-TR SB 9 431 20 VG SG SG 10 2,521 21 SB VG SG 10 694		А	В	С	D	E	F	1
Billution cullet Product run Time period Dilution cullet used (tons) 4 SG AL SB 1 294 5 SG AL SB 1 294 5 SB VG SG 1 571 6 C4-TR CL C4-TR 1 83 7 SB SG SB 2 772 8 SG C4-TR SB 2 204 9 VG SB VG 3 345 VG SB VG 3 2,702 SB VG SG 3 2,702 SB VG SG 3 2,702 SB VG SG SG 3 2,702 SB VG SG SB 4 2,702 SB SG SB SB 5 3,435 14 SG C4-TR SB 5 1,436	1	Type and	d amount of c	lilution cul	let used in each	production run (tons)	
4 SG AL SB 1 294 5 SB VG SG 1 571 6 C4-TR CL C4-TR 1 83 7 SB SG SB 2 772 8 SG C4-TR SB 2 204 9 VG SB VG 3 345 10 VG SG VG 3 1 11 SB VG SG 3 2,702 12 SB SG SB 4 272 13 C4-TR CL AL 5 53 14 SG C4-TR SB 5 995 15 SG SB SB 5 995 14 SG C4-TR SB 5 995 15 SG SG VG 6 2,575 17 SB VG SG <td>2</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2	1						
SB VG SG 1 571 6 C4-TR CL C4-TR 1 83 7 SB SG SB 2 772 8 SG C4-TR SB 2 204 9 VG SB VG 3 345 10 VG SG VG 3 1 11 SB VG SG 3 2,702 SB SG SB 4 272 11 SB VG SG 3 2,702 SB SG SB 4 272 12 SB SG SB 4 272 13 C4-TR CL AL 5 53 14 SG C4-TR SB 5 1,436 15 SG SB SB 5 995 16 VG SG VG 6 2,575	3		Dilutio	n cullet	Product run Ti	me period Diluti	on cullet used (tons)	
6 C4-TR CL C4-TR 1 83 7 SB SG SB 2 772 8 SG C4-TR SB 2 204 9 VG SB VG 3 345 10 VG SG VG 3 1 11 SB VG SG 3 2,702 12 SB SG SB 4 272 13 C4-TR CL AL 5 53 14 SG C4-TR SB 5 1,436 15 SG SB SB 5 995 16 VG SG VG 6 2,575 17 SB VG SG 7 1,820 18 SG C4-TR SB 9 1,355 19 CL C4-TR AL 9 431 20 VG SG	4		SG	AL	SB	1	294	
7 SB SG SB 2 772 8 SG C4-TR SB 2 204 9 VG SB VG 3 345 10 VG SG VG 3 1 11 SB VG SG 3 2,702 12 SB SG SB 4 272 13 C4-TR CL AL 5 53 14 SG C4-TR SB 5 1995 15 SG SG VG 6 2,575 16 VG SG 7 1,820 16 VG SG 7 1,820 17 SB VG SG 7 1,820 18 SG C4-TR SB 9 1,355 19 CL C4-TR AL 9 431 20 VG SG SG 10	5		SB	VG	SG	1	571	
8 SG C4-TR SB 2 204 9 VG SB VG 3 345 10 VG SG VG 3 11 SB VG SG 3 2,702 SB SG SB 4 272 C4-TR CL AL 5 53 14 SG C4-TR SB 5 195 15 SG SB SB 5 995 16 VG SG VG 6 2,575 17 SB VG SG 7 1,820 18 SG C4-TR SB 9 1,355 18 SG C4-TR SB 9 1,355 19 CL C4-TR AL 9 431 20 VG SG SG 10 2,521 21 SB VG SG 10 694	6		C4-TR	CL	C4-TR	1	83	
9 VG SB VG 3 345 10 VG SG VG 3 1 11 SB VG SG 3 2,702 12 SB SG SB 4 272 13 C4-TR CL AL 5 53 14 SG C4-TR SB 5 1,436 15 SG SG VG 6 2,575 16 VG SG 7 1,820 17 SB VG SG 7 1,820 18 SG C4-TR SB 9 1,355 19 CL C4-TR SB 9 1,355 19 CL C4-TR AL 9 431 20 VG SG SG 10 2,521 21 SB VG SG 10 694	7		SB	SG	SB	2	772	
VG SG VG 3 1 SB VG SG 3 2,702 SB SG SB 4 272 C4-TR CL AL 5 53 IA SG C4-TR SB 5 1,436 SG SG VG SG 2,575 1,436 VG SG VG SG 2,575 1,820 SG C4-TR SB 9 1,355 1,435 CI SG VG SG 7 1,820 SG C4-TR SB 9 1,355 CL C4-TR AL 9 431 VG SG SG 10 2,521 SB VG SG 10 694	8		SG	C4-TR	SB	2	204	
SB VG SG 3 2,702 I2 SB SG SB 4 272 I3 C4-TR CL AL 5 53 I4 SG C4-TR SB 5 1,436 I5 SG SB SB 5 995 I6 VG SG VG 6 2,575 I7 SB VG SG 7 1,820 I8 SG C4-TR SB 9 1,355 I9 CL C4-TR AL 9 431 20 VG SG SG 10 2,521 21 SB VG SG 10 694	9		VG	SB	VG	3	345	
SB SG SB 4 272 13 C4-TR CL AL 5 53 14 SG C4-TR SB 5 1,436 15 SG SB SB 5 995 16 VG SG VG 6 2,575 17 SB VG SG 7 1,820 18 SG C4-TR SB 9 1,355 19 CL C4-TR AL 9 431 20 VG SG SG 10 2,521 21 SB VG SG 10 694	10		VG	SG	VG	3	1	
I3 C4-TR CL AL 5 53 14 SG C4-TR SB 5 1,436 15 SG SB SB 5 995 16 VG SG VG 6 2,575 17 SB VG SG 7 1,820 18 SG C4-TR SB 9 1,355 19 CL C4-TR AL 9 431 20 VG SG SG 10 2,521 21 SB VG SG 10 694	11		SB	VG	SG	3	2,702	
IA SG C4-TR SB 5 1,436 IS SG SB SB 5 995 IS VG SG VG 6 2,575 I7 SB VG SG 7 1,820 I8 SG C4-TR SB 9 1,355 I9 CL C4-TR AL 9 431 20 VG SG SG 10 2,521 SB VG SG 10 694	12		SB	SG	SB	4	272	
SG SB SB S 995 16 VG SG VG 6 2,575 17 SB VG SG 7 1,820 18 SG C4-TR SB 9 1,355 19 CL C4-TR AL 9 431 20 VG SG SG 10 2,521 21 SB VG SG 10 694	13		C4-TR	CL	AL	5	53	
VG SG VG 6 2,575 17 SB VG SG 7 1,820 18 SG C4-TR SB 9 1,355 19 CL C4-TR AL 9 431 20 VG SG SG 10 2,521 21 SB VG SG 10 694	14		SG	C4-TR	SB	5	1,436	
SB VG SG 7 1,820 IB SG C4-TR SB 9 1,355 19 CL C4-TR AL 9 431 20 VG SG SG 10 2,521 21 SB VG SG 10 694	15		SG	SB	SB	5	995	
IB SG C4-TR SB 9 1,355 19 CL C4-TR AL 9 431 20 VG SG SG 10 2,521 21 SB VG SG 10 694	16		VG	SG	VG	6	2,575	
CL C4-TR AL 9 431 20 VG SG SG 10 2,521 21 SB VG SG 10 694	17		SB	VG	SG	7	1,820	
20 VG SG SG 10 2,521 21 SB VG SG 10 694	18		SG	C4-TR	SB	9	1,355	
21 SB VG SG 10 694	19		CL	C4-TR	AL	9	431	
	20		VG	SG	SG	10	2,521	
22 C4-TR CL C4-TR 11 105	21		SB	VG	SG	10	694	
	22		C4-TR	CL	C4-TR	11	105	
23 SG C4-TR SB 12 1,617	23		SG	C4-TR	SB	12	1,617	

Cullet charts

Cullet results

- Cullet summary (consumption, generation, accumulation)
- Cullet balances per run
- Inventory profiles for cullet (by color and totals)
- Quality and quantity of dilution cullet used per run

- A MILP model for the optimal planning and scheduling of two production lines has been developed.
- The model involves specific features adapted for the lass production.
- The integration of cullet management and glass production planning and scheduling is a new approach.
- The model is implemented in a software tool using Excel as front-end.
- The software started to be used by the supply chain group in parallel with the current approach.

Future model extensions

- 1. Include the **thickness** as an additional attribute.
 - It will increase the size of the model in terms of continuous variables, and equations.
 - There is no changeover or setup between products with same color with different thicknesses
- 2. Assessment of the **impact of the variability** of the main parameters in the robustness of the production schedule and economic impact.
 - Incorporate the uncertainty of some parameters in the decision making process.

Scientists study what is.

Engineers create what never was.

Von Kármán

I figure it how to run it. And I got results back! JS

Martin, C.H., Dent, D.C., Eckhart, J.C. (1993). Integrated production, distribution, and inventory planning at Libbey-Owens. Interfaces, 23(3), 68-78.

Erdirik-Dogan, M., Grossmann, I.E. (2008). Simultaneous planning and scheduling of single-stage multi-product continuous plants with parallel lines. Computers & Chemical Engineering, 32(11), 2664-2683.

Lima, R.M., Grossmann, I.E., Jiao, Y., Long-term scheduling of a single-unit multi-product continuous process to manufacture high performance glass . Computers& Chemical Engineering, 35, 554-574.