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Project Overview

Polypropylene production facility

= Chemical and refinery grade feedstocks with different prices
and propylene purities.

= Best operation will balance production rate with costs of
feedstocks, maximizing plant throughput.

* Obijectives:

> Development of a Non-linear Programming (NLP) model to
maximize benefits by obtaining a better balance of RG and CG
feedstocks for single or multiple production orders.

> Determine operation rates for a schedule of multiple production
orders within a 3-month timeframe.

° Implement user-friendly interface (GAMS model / MS-Excel)
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Maximizing the amount of RG may not be the best economic option
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o Limits on catalyst yield and flow
o Availability of Chemical Grade
o Specifications on splitter feed and recycle rate
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e Maximize Profit

e Constraints on each time interval:
o Material balances
o Min/Max flow rates

o Constraints on composition of Propane Return, Distillation Overhead
& Reactor Feed

o Limits on catalyst yield and flow
o Availability of Chemical Grade
o Specifications on splitter feed and recycle rate

e Decision variables:
° Production rate of polypropylene
> RG and CG feedrates
o Distillation overhead flow and composition
o Reactor feed and catalyst flow
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e Model size: 31 variables, 40 constraints
e Solved with CONOPT and BARON in less than | CPU s.
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costs vs production rates (depending on available time).
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° Single Product Model (one time interval)

> Maximize profit in terms of $/hr
> Best production rate with minimum cost of feedstocks.

e Model size: 31 variables, 40 constraints
e Solved with CONOPT and BARON in less than | CPU s.

e Multiple Product Model
> Multiple orders of different products
> Production sequence given beforehand
o Profit ($) = selling prices — feedstock costs
+ propane return — others
> Solution gives best production rates with minimum costs for each

product Mid-size example (20 products, 5 families)

* Model size: 727 variables, 986 constraints

e Solved by CONOPT in ~9 seconds.

e Preliminary results show realistic tradeoff on feedstocks
costs vs production rates (depending on available time).

Models implemented with GAMS
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User Interface via Excel Worksheet

User interface for GAMS multiple-product model developed
in MS Excel

* Allows definition of input data and model parameters

* Presents results (output) in different levels of detail

* VBA code takes care of validation, running GAMS, and updating
results.

» Flexibility to easily test different production schedules with
alternative parameters.
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User Interface via Excel Worksheet

User interface for GAMS multiple-product model developed
in MS Excel

Allows definition of input data and model parameters

Presents results (output) in different levels of detail

VBA code takes care of validation, running GAMS, and updating
results.

Flexibility to easily test different production schedules with
alternative parameters.

Specific parameters for testing gain/loss scenarios:

Time horizon

e Addition of slack product (yes/no)
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Overview of GAMS/Excel integration
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* Parameters MS Excel
*  Product and * General results
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Screenshots

1
2

Braskem America - Neal Plant
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Screenshots
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Feedstock Optimization Model
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Improvements on Distillation Model

Objective:

Develop an approximation procedure that provides overall treatment
of the distillation (no details about flows, composition, temperatures, etc. for
each individual tray)

The number of variables and constraints must remain small

The predicted outputs must closely match those of rigorous model
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* Develop an approximation procedure that provides overall treatment
of the distillation (no details about flows, composition, temperatures, etc. for
each individual tray)

* The number of variables and constraints must remain small
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Aggregated group-method of
Kamath et al. (2010)
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Improvements on Distillation Model

Objective:

* Develop an approximation procedure that provides overall treatment
of the distillation (no details about flows, composition, temperatures, etc. for
each individual tray)

* The number of variables and constraints must remain small
* The predicted outputs must closely match those of rigorous model

Aggregated group-method of
Kamath et al. (20 | 0) Distillation

% Models a counter-current C3 Splitter Overhead
cascade of trays modeled with
Group-Method

~53% total trays

Vi Lo Vv, Lo

Feed 1 tray

~ 47% total trays

VN+l LN VN+1 LN Bottoms

Tray-by-Tray Method Group-Method
(Rigorous) (Approximate)

Kamath, Grossmann and Biegler (2010), Comp. and Chem. Eng. 34, pp. 1312-1319
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Improvements on Distillation Model
C3 Splitter modeled with Group-Method

Degrees of freedom: Additional Assumptions
e Reflux rate * Fixed pressure for the whole

column = 9.778 atm
* Total condenser (top)
* Total reboiler (bottom)
* Single feed

* Bottoms composition
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Improvements on Distillation Model
C3 Splitter modeled with Group-Method

Degrees of freedom: Additional Assumptions
e Reflux rate * Fixed pressure for the whole

column = 9.778 atm
* Total condenser (top)
* Total reboiler (bottom)
* Single feed

* Bottoms composition

Parameterization and Validation
e Comparison against rigorous tray-to-tray simulations (Aspen / HySys)
based on plant data.

Comparison of different column sizes (or efficiencies) Tray-to-tray relative volatilities predicted by
against linear correlation rigorous model

Overhead Propane composition
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Conclusions and Future Work

CONCLUSIONS

e Single and multiple-product feedstock optimization models
including distillation and polymerization processes.

» User interface through MS Excel developed and being tested
(with promising initial results).

e Proposed method handles gain/loss scenarios and large
schedules (through aggregation/disaggregation).

e Distillation model reformulated using aggregated group-method
based on work of Kamath et al. 2010.
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Conclusions and Future Work

CONCLUSIONS

e Single and multiple-product feedstock optimization models
including distillation and polymerization processes.

» User interface through MS Excel developed and being tested
(with promising initial results).

e Proposed method handles gain/loss scenarios and large
schedules (through aggregation/disaggregation).

e Distillation model reformulated using aggregated group-method
based on work of Kamath et al. 2010.

FUTURE WORK

e Final deployment of computational tool to assess monthly
feedstock purchase decisions.

e Parameterization of aggregated group-method, and integration
with overall plant model.



