

O

Operational Model for C3 Feedstock Optimization on a Polypropylene Production Facility

Pablo A. Marchetti, Ignacio E. Grossmann

Department of Chemical Engineering Carnegie Mellon University

marchet@andrew.cmu.edu

Wiley A. Bucey, Rita A. Majewski Braskem America

Center for Advanced Process Decision-making Enterprise-Wide Optimization (EWO) Meeting – September 26-27, 2012

Project Overview

Polypropylene production facility

- Chemical and refinery grade feedstocks with different prices and propylene purities.
- Best operation will balance production rate with costs of feedstocks, maximizing plant throughput.

Project Overview

Polypropylene production facility

- Chemical and refinery grade feedstocks with different prices and propylene purities.
- Best operation will balance production rate with costs of feedstocks, maximizing plant throughput.
- Objectives:
 - Development of a Non-linear Programming (NLP) model to maximize benefits by obtaining a better balance of RG and CG feedstocks for single or multiple production orders.
 - Determine operation rates for a schedule of multiple production orders within a 3-month timeframe.
 - Implement user-friendly interface (GAMS model / MS-Excel)

Process and Problem Description

Process and Problem Description

Maximizing the amount of RG may not be the best economic option

Mathematical Model (NLP)

• Maximize Profit

Mathematical Model (NLP)

- Maximize Profit
- Constraints on each time interval:
 - Material balances
 - Min/Max flow rates
 - Constraints on composition of Propane Return, Distillation Overhead & Reactor Feed
 - Limits on catalyst yield and flow
 - Availability of Chemical Grade
 - Specifications on splitter feed and recycle rate

Mathematical Model (NLP)

- Maximize Profit
- Constraints on each time interval:
 - Material balances
 - Min/Max flow rates
 - Constraints on composition of Propane Return, Distillation Overhead & Reactor Feed
 - Limits on catalyst yield and flow
 - Availability of Chemical Grade
 - Specifications on splitter feed and recycle rate
- Decision variables:
 - Production rate of polypropylene
 - RG and CG feedrates
 - Distillation overhead flow and composition
 - Reactor feed and catalyst flow

Single/Multiple Product Models

- Single Product Model (one time interval)
 - Maximize profit in terms of \$/hr
 - Best production rate with minimum cost of feedstocks.
 - Model size: 31 variables, 40 constraints
 - Solved with CONOPT and BARON in less than I CPU s.

Single/Multiple Product Models

- Single Product Model (one time interval)
 - Maximize profit in terms of \$/hr
 - Best production rate with minimum cost of feedstocks.
 - Model size: 31 variables, 40 constraints
 - Solved with CONOPT and BARON in less than I CPU s.
- Multiple Product Model
 - Multiple orders of different products
 - Production sequence given beforehand
 - Profit (\$) = selling prices feedstock costs

+ propane return – others

- Solution gives best production rates with minimum costs for each product
 Mid size exemple (20 areducts 5 families)
 - Mid-size example (20 products, 5 families)
 - Model size: 727 variables, 986 constraints
 - Solved by CONOPT in ~9 seconds.
 - Preliminary results show realistic tradeoff on feedstocks costs vs production rates (depending on available time).

Single/Multiple Product Models

- Single Product Model (one time interval)
 - Maximize profit in terms of \$/hr
 - Best production rate with minimum cost of feedstocks.
 - Model size: 31 variables, 40 constraints
 - Solved with CONOPT and BARON in less than I CPU s.
- Multiple Product Model
 - Multiple orders of different products
 - Production sequence given beforehand
 - Profit (\$) = selling prices feedstock costs

+ propane return – others

- Solution gives best production rates with minimum costs for each product
 Mid size evenuels (20 anodusts 5 families)
 - Mid-size example (20 products, 5 families)
 - Model size: 727 variables, 986 constraints
 - Solved by CONOPT in ~9 seconds.
 - Preliminary results show realistic tradeoff on feedstocks costs vs production rates (depending on available time).

Models implemented with GAMS

User interface for GAMS multiple-product model developed in MS Excel

- Allows definition of input data and model parameters
- Presents results (output) in different levels of detail
- VBA code takes care of validation, running GAMS, and updating results.
- Flexibility to easily test different production schedules with alternative parameters.

User interface for GAMS multiple-product model developed in MS Excel

- Allows definition of input data and model parameters
- Presents results (output) in different levels of detail
- VBA code takes care of validation, running GAMS, and updating results.
- Flexibility to easily test different production schedules with alternative parameters.

Specific parameters for testing gain/loss scenarios:

- Time horizon
- Addition of slack product (yes/no)

Screenshots

Screenshots

	А	В	С	D	E	F	G	Н	1	J		K		
1														
2	Braskem A	merica - Neal	Plant											
3	Feeds	tock Op	otimi	zation Mod	el				Time Horizon:	50	davs			
4											,-			
5	Schedule Data		Schedule Results			17-Jun, 08:30 AM		Add SLACK Product 🔽						
6														
7	Order	Product	# Cars	Start Time	Duration	Production Rate	Profit		Run Foodstock Model					
8				(date & time)	(hs)	(Ibs/hr)	(\$)		Run Peeustock Woder					
9	1	#####	10	dd-mmm, hh:mm	##.##	##,###.##	###,###.##							
10	2	######	10	dd-mmm, hh:mm	##.##	##,###.##	###,###.##		Update Results					
11	3	######	34	dd-mmm, hh:mm	###.##	##,###.##	###,###.##							
12	4	####	2	dd-mmm, hh:mm	#.##	##,###.##	##,###.##							
13	5	#######	8	dd-mmm, hh:mm	##.##	##,###.##	##,###.##							
14	6	####	2	dd-mmm, hh:mm	#.##	##,###.##	##,###.##							
15	7	######	30	dd-mmm, hh:mm	##.##	##,###.##	###,###.##							
16	8	####	2	dd-mmm, hh:mm	#.##	##,###.##	##,###.##							
17	9	#######	14	dd-mmm, hh:mm	##.##	##,###.##	###,###.##							
18	10	######	10	dd-mmm, hh:mm	##.##	##,###.##	###,###.##							
19	11	#######	4	dd-mmm, hh:mm	##.##	##,###.##	##,###.##							
20	12	####	2	dd-mmm, hh:mm	#.##	##,###.##	##,###.##							
21	13	#####	12	dd-mmm, hh:mm	##.##	##,###.##	###,###.##							
22	14	#######	7	dd-mmm, hh:mm	##.##	##,###.##	##,###.##							

Screenshots

	А	В	С	D		E	F	G		H	1	J	K			
1	Decision A		Diant													
2	Braskem A	merica - Neai	Plant													
3	Feeds	stock Or	otimi	zation Mod	lel					The		50				
4		1								IIII	he Horizon:	50 0	lays			
5	Schedule Da	chedule Data Schedule Results					17-Jun, 08:30	AM	Ad	ld SLACK Prod	uct 🔽					
6																
7	Order	Product	# Cars	Start Time	Duration		Production Rate	Profit			Dun Foodate	ack Ma	dal			
8				(date & time)	(hs)		(Ibs/hr)	(\$)			Kun reeusti	JCK IVIO	dei			
9	1	#####	10	dd-mmm, hh:mm	##.##		##,###.##	###,##	4.##				1			
10	2	*****	10	dd-mmm, hh:mm	##.##		##,###.##	###,##	4.##		Update Results					
11	3	######	34	dd-mmm, hh:mm	###.##		##,###.##	###,###.##								
12	4	####	2	dd-mmm, hh:mm	#.##		##,###.##	##,###.##								
13	5	#######	8	dd-mmm, hh:mm	##.##		##,###.##	##,###.##								
14	6	####	2	dd-mmm, hh:mm	#.##		##,###.##	##,###.##								
15	7	######	30	dd-mmm, hh:mm	##.##		##,###.##	###,##	4.##							
16	8	####	2	dd-mmm, hh:mm	#.##		##,###.##	##,##	4.##							
17	9	#######	14	dd-mmm, hh:	Α		В	C	D	E	F	-	G	Н	I.	J
18	10	######	10	dd-mmm, hh:												
19	11	#######	4	dd-mmm, hh:		Mu	tiple-produ	ct Feed	stocl	z Mo	ndel - I)et:	iled F	?esults		
20	12	####	2	dd-mmm, hh:		Mu	upic produ	ct i ccu	JUUCI	x 1010	Juci I	νu	incu i	Courts		
21	13	#####	12	dd-mmm, hh: 2		Time Herizon - 50 days										
22	14	#######	7	dd-mmm, hh:		Time Horizon = 50 days										
							TIME SLOTS		1	2		2	4	5	6	7
				6									-		<u> </u>	
	7 8					Production Requirements										
						Produ	:t						#####	******	####	******
	9 10			9	Produ		t Family	#		###	# ##	##	****	####	****	####
				# Cars				10		10	34		2 8	2	30	
				11												
12						Results Summary										
	13					Production rate (lb/hr)			##,###	+	##,###	##,###	##,#	## ##,###	##,###	##,###
				14		Time (nr)		##.##		##.##	***.**	#.	## ##.##	#.##	##.##
				15		LDS OT	product		,###,###	#,##	н,нн н,н	**,***	###,#	** *,***,***	***,***	#,###,###
				10	Refinery Grade											
	18					% propane			**.****	#1			##,##	## ##,####	##,####	##,####
				19		% prop	ylene		**.****	##	*.#### #		##.##	## ##.####	##.####	##.####
				20		lbs/hr			##,###	#	**,***	##,###	##,#	## ##,###	##,###	##,###
				21		lbs/hr	propane		#,###		#,###	#,###	#,#	## #,###	#,###	#,###
				22	lbs/hr propylene				##,###	#	*#,###	##,###	##,#	## ##,###	##,###	##,###
				23			Chemical Grade									
				24		% prop	ane		##.####	##	*.#### *		##.##	## ##.####	##.####	##.####
				25		% prop	lylene		##.####	##	*.#### #		##.##	** *****	##.####	##.####

lbc/br

Objective:

- Develop an approximation procedure that provides overall treatment of the distillation (no details about flows, composition, temperatures, etc. for each individual tray)
- The number of variables and constraints must remain small
- The predicted outputs must closely match those of rigorous model

Objective:

- Develop an approximation procedure that provides overall treatment of the distillation (no details about flows, composition, temperatures, etc. for each individual tray)
- The number of variables and constraints must remain small
- The predicted outputs must closely match those of rigorous model

Aggregated group-method of Kamath et al. (2010)

 Models a counter-current cascade of trays

Objective:

- Develop an approximation procedure that provides overall treatment of the distillation (no details about flows, composition, temperatures, etc. for each individual tray)
- The number of variables and constraints must remain small
- The predicted outputs must closely match those of rigorous model

Aggregated group-method of Kamath et al. (2010)

 Models a counter-current cascade of trays

Kamath, Grossmann and Biegler (2010), Comp. and Chem. Eng. 34, pp. 1312-1319

C3 Splitter modeled with Group-Method

Degrees of freedom:

- Reflux rate
- Bottoms composition

Additional Assumptions

- Fixed pressure for the whole column = 9.778 atm
- Total condenser (top)
- Total reboiler (bottom)
- Single feed

C3 Splitter modeled with Group-Method

Degrees of freedom:

- Reflux rate
- Bottoms composition

Additional Assumptions

- Fixed pressure for the whole column = 9.778 atm
- Total condenser (top)
- Total reboiler (bottom)
- Single feed

Parameterization and Validation

 Comparison against rigorous tray-to-tray simulations (Aspen / HySys) based on plant data.

Conclusions and Future Work

CONCLUSIONS

- Single and multiple-product feedstock optimization models including distillation and polymerization processes.
- User interface through MS Excel developed and being tested (with promising initial results).
- Proposed method handles gain/loss scenarios and large schedules (through aggregation/disaggregation).
- Distillation model reformulated using aggregated group-method based on work of Kamath et al. 2010.

Conclusions and Future Work

CONCLUSIONS

- Single and multiple-product feedstock optimization models including distillation and polymerization processes.
- User interface through MS Excel developed and being tested (with promising initial results).
- Proposed method handles gain/loss scenarios and large schedules (through aggregation/disaggregation).
- Distillation model reformulated using aggregated group-method based on work of Kamath et al. 2010.

FUTURE WORK

- Final deployment of computational tool to assess monthly feedstock purchase decisions.
- Parameterization of aggregated group-method, and integration with overall plant model.