

Quantitative Methods for Strategic Investment Planning in the Oil-Refining Industry

Brenno C. Menezes

Refining Optimization PETROBRAS Petroleo S.A. Rio de Janeiro, RJ

Ignacio E. Grossmann Department of Chemical Engineering Carnegie Mellon University Pittsburgh, PA

industrIALgorithms

Jeffrey D. Kelly, Alkis Vazacopoulos IndustrIALgorithms Toronto, ON

<u>Goal</u>: develop quantitative methods to predict structural modifications in refining assets through time

PETROBRAS Current Tool for Strategic Planning (PLANINV) – LP

CENTER

Capital Investment Planning Formulation

Where:QF= operational flowQE= expanded capacityQC= total capacityQI= installed capacity

ye=expansion of an existent unit yi= installation of a new unit

- Installation (grassroots);
- Project Execution;

Carnegie Mellon

- Sequence-dependent setups.

Generalized Capital Investment Planning (GCIP) Model

M COST	aintenance Planning Turnaround and Inspection (T&I)	<pre>/ Capacity Planning/ Production Design Synthesis</pre>	Facilities Planning/ Process Design Synthesis
100-1000 \$M	EXPANSIONS ar (Capacity)	nd EXTENSIONS (Capability)	INSTALLATIONS REVAMP Construction
10-100 \$M		RETROFIT Commission	(Strategic)
0.1-1 \$M	REPAIR Correction (Operational)	(Tactical, Debottlenecking)	
	Weeks	Months	Years

Figure 1. Three types of capital investment planning problems.

Carnegie Mellon ENGINEERING

The sequence-dependent setup mathematics using a discrete-time model careful be found in Kelly & Zyngier, I&ECR, 46, (2007), Equation 12.

Figure 2a shows the stages of two batches and the profiles of the independent variable $(y_{i,t})$ and the four dependent variables $(su_{i,t})$ $sd_{i,t}$, $sw_{i,t}$, and $yy_{i,t}$) extracted from Kelly and Zyngier (2007). For the capital investment planning case (Figure 2b), the startup, shutdown and switchover-to-itself variables $(su_{i,t}, sd_{i,t}, sw_{i,i,t})$ are disregarded, only the setup and the memory variables $(yy_{i,t})$ are defined to control the project scheduling and staging. In our project scheduling case, the time-duration of the dependent startup and shutdown transitions are covered by the intermediate stages (correction, commission, or construction).

$$(yy_{i,t} + yy_{i,t-1} - 1) + su_{j,t} - sd_{m,t} \le 1$$

i, j = operation mode (batch 1, batch 2, existing, nonexisting, expanded, installed)
m = maintenance, commission, construction

Figure 3. Motivating example 1: small GCIP flowsheet for expansion.

Figure 4. Gantt chart for expansion of a generalized CIP example.

EWO Meeting – September 2014

Example Jackson and Grossmann (2002) example

Figure 7. Retrofit example for capacity (expansion) and capability (extension) projects.

Figure 9. Gantt chart for Jackson and Grossmann (2002) example.

Figure 8. UOPSS flowsheet.

Figure 10. Oil-refinery example flowsheet.

UO-CDU-VDU

Figure 11. Gantt chart for the CDU and VDU installations.

Conclusions

Novelty:

- Includes project execution time (excluding the production from expanded units during this period)
- Expansion and Installation to control the capacity increment of units
- More realistic approach (in a quantitative manner) for strategic investment planning in the oil-refining industry
- The generalized capital investment planning introduces a novel modeling for optimization of project setups and phases using sequence-dependent logic, where capital and capacity are treated as flows in a scheduling environment.

Conclusions

Impact for industrial applications:

- Realistic formulation to predict investments in oil-refinery units, considering the stages of the projects.
- Avoids overestimating/underestimating capacity expansion/installation
- The strategic decision-making modeled in a scheduling environment can be extended easily to the entire supply chain for decisions on which units, tanks, pipelines, blenders, etc. to expand or newly build (economics) considering their operations (performance).